cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376655 Sorted positions of first appearances in the second differences of consecutive squarefree numbers (A005117).

This page as a plain text file.
%I A376655 #14 Oct 08 2024 13:36:41
%S A376655 1,2,3,5,6,30,61,150,514,1025,5153,13390,13391,131964,502651,664312,
%T A376655 4387185,5392318,20613826
%N A376655 Sorted positions of first appearances in the second differences of consecutive squarefree numbers (A005117).
%C A376655 Warning: Do not confuse with A246655 (prime-powers exclusive).
%e A376655 The squarefree numbers (A005117) are:
%e A376655   1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, ...
%e A376655 with first differences (A076259):
%e A376655   1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, ...
%e A376655 with first differences (A376590):
%e A376655   0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, ...
%e A376655 with sorted first appearances at (A376655):
%e A376655   1, 2, 3, 5, 6, 30, 61, 150, 514, 1025, 5153, 13390, 13391, ...
%t A376655 q=Differences[Select[Range[1000],SquareFreeQ],2];
%t A376655 Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]
%Y A376655 For first differences we had A376311 (first appearances in A076259).
%Y A376655 These are the sorted positions of first appearances in A376590.
%Y A376655 For prime-powers instead of squarefree numbers we have A376653/A376654.
%Y A376655 For primes instead of squarefree numbers we have A376656.
%Y A376655 A000040 lists the prime numbers, differences A001223.
%Y A376655 A005117 lists squarefree numbers, complement A013929 (differences A078147).
%Y A376655 A073576 counts integer partitions into squarefree numbers, factorizations A050320.
%Y A376655 For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376593 (nonsquarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive).
%Y A376655 For squarefree: A376591 (inflections and undulations), A376592 (nonzero curvature).
%Y A376655 Cf. A000961, A007674, A053797, A053806, A061398, A072284, A112925, A112926, A120992, A251092, A373198, A376342.
%K A376655 nonn,more
%O A376655 1,2
%A A376655 _Gus Wiseman_, Oct 07 2024
%E A376655 a(14)-a(19) from _Chai Wah Wu_, Oct 07 2024