This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376655 #14 Oct 08 2024 13:36:41 %S A376655 1,2,3,5,6,30,61,150,514,1025,5153,13390,13391,131964,502651,664312, %T A376655 4387185,5392318,20613826 %N A376655 Sorted positions of first appearances in the second differences of consecutive squarefree numbers (A005117). %C A376655 Warning: Do not confuse with A246655 (prime-powers exclusive). %e A376655 The squarefree numbers (A005117) are: %e A376655 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, ... %e A376655 with first differences (A076259): %e A376655 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, ... %e A376655 with first differences (A376590): %e A376655 0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, ... %e A376655 with sorted first appearances at (A376655): %e A376655 1, 2, 3, 5, 6, 30, 61, 150, 514, 1025, 5153, 13390, 13391, ... %t A376655 q=Differences[Select[Range[1000],SquareFreeQ],2]; %t A376655 Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&] %Y A376655 For first differences we had A376311 (first appearances in A076259). %Y A376655 These are the sorted positions of first appearances in A376590. %Y A376655 For prime-powers instead of squarefree numbers we have A376653/A376654. %Y A376655 For primes instead of squarefree numbers we have A376656. %Y A376655 A000040 lists the prime numbers, differences A001223. %Y A376655 A005117 lists squarefree numbers, complement A013929 (differences A078147). %Y A376655 A073576 counts integer partitions into squarefree numbers, factorizations A050320. %Y A376655 For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376593 (nonsquarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive). %Y A376655 For squarefree: A376591 (inflections and undulations), A376592 (nonzero curvature). %Y A376655 Cf. A000961, A007674, A053797, A053806, A061398, A072284, A112925, A112926, A120992, A251092, A373198, A376342. %K A376655 nonn,more %O A376655 1,2 %A A376655 _Gus Wiseman_, Oct 07 2024 %E A376655 a(14)-a(19) from _Chai Wah Wu_, Oct 07 2024