This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376657 #10 Oct 08 2024 18:39:44 %S A376657 1,0,0,1,0,0,0,1,1,0,0,1,0,0,0,2,0,1,0,1,0,0,0,1,1,0,1,1,0,0,0,2,0,0, %T A376657 0,2,0,0,0,1,0,0,0,1,1,0,0,2,1,1,0,1,0,1,0,1,0,0,0,1,0,0,1,4,0,0,0,1, %U A376657 0,0,0,3,0,0,1,1,0,0,0,2,2,0,0,1,0,0,0 %N A376657 Number of integer factorizations of n into nonsquarefree factors > 1. %e A376657 The a(n) factorizations for n = 16, 64, 72, 144, 192, 256, 288: %e A376657 (16) (64) (72) (144) (192) (256) (288) %e A376657 (4*4) (8*8) (8*9) (4*36) (4*48) (4*64) (4*72) %e A376657 (4*16) (4*18) (8*18) (8*24) (8*32) (8*36) %e A376657 (4*4*4) (9*16) (12*16) (16*16) (9*32) %e A376657 (12*12) (4*4*12) (4*8*8) (12*24) %e A376657 (4*4*9) (4*4*16) (16*18) %e A376657 (4*4*4*4) (4*8*9) %e A376657 (4*4*18) %t A376657 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A376657 Table[Length[Select[facs[n],NoneTrue[SquareFreeQ]]],{n,100}] %Y A376657 For prime-powers we have A000688. %Y A376657 Positions of zeros are A005117 (squarefree numbers), complement A013929. %Y A376657 For squarefree instead of nonsquarefree we have A050320, strict A050326. %Y A376657 For nonprime numbers we have A050370. %Y A376657 The version for partitions is A114374. %Y A376657 For perfect-powers we have A294068. %Y A376657 For non-perfect-powers we have A303707. %Y A376657 For non-prime-powers we have A322452. %Y A376657 The strict case is A376679. %Y A376657 Nonsquarefree numbers: %Y A376657 - A078147 (first differences) %Y A376657 - A376593 (second differences) %Y A376657 - A376594 (inflections and undulations) %Y A376657 - A376595 (nonzero curvature) %Y A376657 A000040 lists the prime numbers, differences A001223. %Y A376657 A001055 counts integer factorizations, strict A045778. %Y A376657 A005117 lists squarefree numbers, differences A076259. %Y A376657 A317829 counts factorizations of superprimorials, strict A337069. %Y A376657 Cf. A008480, A053797, A053806, A061398, A089259, A120992, A124010, A182853, A373198, A375707, A376312. %K A376657 nonn %O A376657 1,16 %A A376657 _Gus Wiseman_, Oct 07 2024