This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376659 #9 Oct 06 2024 08:48:36 %S A376659 3,3,3,5,2,6,0,2,0,7,0,3,7,0,8,0,8,6,0,2,9,1,2,2,4,4,8,1,5,6,3,3,5,2, %T A376659 4,6,7,3,0,8,8,4,9,8,7,0,9,9,2,7,7,9,6,8,2,0,6,1,3,7,0,4,6,5,3,8,3,8, %U A376659 2,8,8,8,1,9,4,3,7,2,1,2,0,1,2,2,7,4,2,2,8,0,3,2,7,5,6,4,1,8,2,1,6,4,3,7,3 %N A376659 Decimal expansion of a constant related to the asymptotics of A376626 and A376627. %F A376659 Equals exp(sqrt(2*(3*log(r)^2 + polylog(2, 1 - r^2)))), where r = A075778 = 0.7548776662466927600495088963585286918946... is the real root of the equation r^2*(1+r) = 1. %F A376659 Equals limit_{n->infinity} A376626(n)^(1/sqrt(n)). %F A376659 Equals limit_{n->infinity} A376627(n)^(1/sqrt(n)). %e A376659 3.33526020703708086029122448156335246730884987099277968... %t A376659 RealDigits[E^Sqrt[6*Log[r]^2 + 2*PolyLog[2, 1 - r^2]] /. r -> (-1 + ((25 - 3*Sqrt[69])/2)^(1/3) + ((25 + 3*Sqrt[69])/2)^(1/3))/3, 10, 105][[1]] %Y A376659 Cf. A075778, A333198, A376621, A376626, A376627, A376658, A376660. %K A376659 nonn,cons %O A376659 1,1 %A A376659 _Vaclav Kotesovec_, Oct 01 2024