This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376660 #13 Oct 08 2024 09:36:15 %S A376660 2,0,4,5,3,9,0,6,9,1,8,5,2,0,5,0,6,3,9,8,9,3,7,0,4,2,4,4,3,4,2,6,0,1, %T A376660 2,5,2,2,6,5,9,4,8,7,9,3,4,6,7,8,3,3,1,8,7,9,9,4,6,6,2,8,7,0,9,3,4,4, %U A376660 5,5,6,1,7,3,3,7,1,1,0,7,1,3,9,6,9,8,9,2,2,1,6,4,8,1,4,2,5,3,9,5,2,5,2,8,0,9 %N A376660 Decimal expansion of a constant related to the asymptotics of A376630 and A376631. %F A376660 Equals limit_{n->infinity} A376630(n)^(1/sqrt(n)). %F A376660 Equals limit_{n->infinity} A376631(n)^(1/sqrt(n)). %F A376660 Equals A376815^(1/2). - _Vaclav Kotesovec_, Oct 06 2024 %F A376660 Equals exp(sqrt(3*log(r)^2/4 + 2*polylog(2, r^(1/2)) - Pi^2/6)), where r = A088559 = 0.4655712318767680266567312252199... is the real root of the equation r*(1+r)^2 = 1. - _Vaclav Kotesovec_, Oct 07 2024 %e A376660 2.045390691852050639893704244342601252265948793467833187994662870934455617... %t A376660 RealDigits[E^Sqrt[3*Log[r]^2/4 + 2*PolyLog[2, r^(1/2)] - Pi^2/6] /. r -> (-2 + ((29 - 3*Sqrt[93])/2)^(1/3) + ((29 + 3*Sqrt[93])/2)^(1/3))/3, 10, 120][[1]] (* _Vaclav Kotesovec_, Oct 07 2024 *) %Y A376660 Cf. A333198, A376621, A376630, A376631, A376658, A376659, A376815. %Y A376660 Cf. A088559. %K A376660 nonn,cons %O A376660 1,1 %A A376660 _Vaclav Kotesovec_, Oct 01 2024