This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376667 #8 Oct 05 2024 14:00:40 %S A376667 1,2,56,3,210,166320,4,504,360360,4084080,5,1260,720720,17907120, %T A376667 1396755360,6,1365,2162160,73513440,4190266080,698377680,7,1680, %U A376667 5045040,75675600,4655851200,13967553600,146659312800,8,1716,5765760,220540320,4942365120,27935107200,293318625600,1075501627200 %N A376667 Square array read by antidiagonals: row n lists numbers whose maximal frequency in a fixed row of A036038 (or A078760) is equal to n, i.e., numbers m such that A376663(m) = n. %C A376667 In case there are only finitely many solutions for a certain value of n, the rest of that row is filled with 0's. %C A376667 Each positive integer appears exactly once in the array, so as a linear sequence it is a permutation of the positive integers (unless there are any 0's). %H A376667 Pontus von Brömssen, <a href="/A376667/b376667.txt">Table of n, a(n) for n = 1..465</a> (antidiagonals 1..30) %e A376667 Array begins: %e A376667 n\k| 1 2 3 4 5 6 %e A376667 ---+---------------------------------------------------------------------------------------- %e A376667 1 | 1 2 3 4 5 6 %e A376667 2 | 56 210 504 1260 1365 1680 %e A376667 3 | 166320 360360 720720 2162160 5045040 5765760 %e A376667 4 | 4084080 17907120 73513440 75675600 220540320 411863760 %e A376667 5 | 1396755360 4190266080 4655851200 4942365120 9884730240 24443218800 %e A376667 6 | 698377680 13967553600 27935107200 267711444000 537750813600 586637251200 %e A376667 7 | 146659312800 293318625600 1606268664000 3226504881600 6184134356400 7228208988000 %e A376667 8 | 1075501627200 6453009763200 12368268712800 24736537425600 29683844910720 74209612276800 %Y A376667 Cf. A036038, A078760, A325306 (complement of first row), A376370, A376663, A376673 (first column). %Y A376667 First five rows are A376668, A376669, A376670, A376671, A376672. %K A376667 nonn,tabl %O A376667 1,2 %A A376667 _Pontus von Brömssen_, Oct 02 2024