cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376676 a(n) is the unique k such that the run lengths transform of A376637(n) equals A376637(k).

This page as a plain text file.
%I A376676 #9 Oct 03 2024 11:02:45
%S A376676 1,1,2,3,3,2,5,4,4,5,9,6,7,7,6,9,10,11,8,13,13,8,11,10,15,12,12,15,14,
%T A376676 21,16,17,19,18,18,19,17,16,21,14,23,22,24,20,20,24,22,23,27,28,25,26,
%U A376676 26,25,28,27,38,30,29,34,33,32,32,33,34,29,30,38,37,36
%N A376676 a(n) is the unique k such that the run lengths transform of A376637(n) equals A376637(k).
%C A376676 Every positive integer appears twice in this sequence.
%H A376676 Rémy Sigrist, <a href="/A376676/b376676.txt">Table of n, a(n) for n = 1..10048</a>
%H A376676 Rémy Sigrist, <a href="/A376676/a376676.gp.txt">PARI program</a>
%F A376676 A376637(a(n)) = A351653(A376637(n)).
%e A376676 The first terms, alongside the corresponding terms of A376637, are:
%e A376676   n   a(n)  A376637(n)  A376637(a(n))
%e A376676   --  ----  ----------  -------------
%e A376676    1     1           1              1
%e A376676    2     1           2              1
%e A376676    3     2          11              2
%e A376676    4     3          12             11
%e A376676    5     3          21             11
%e A376676    6     2          22              2
%e A376676    7     5         112             21
%e A376676    8     4         122             12
%e A376676    9     4         211             12
%e A376676   10     5         221             21
%e A376676   11     9        1121            211
%e A376676   12     6        1122             22
%e A376676   13     7        1211            112
%e A376676   14     7        2122            112
%e A376676   15     6        2211             22
%e A376676   16     9        2212            211
%o A376676 (PARI) \\ See Links section.
%Y A376676 Cf. A351653, A376637, A376698, A376733.
%K A376676 nonn,base
%O A376676 1,3
%A A376676 _Rémy Sigrist_, Oct 01 2024