This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376679 #17 Jun 27 2025 08:38:43 %S A376679 1,0,0,1,0,0,0,1,1,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,1,0,1,1,0,0,0,2,0,0, %T A376679 0,2,0,0,0,1,0,0,0,1,1,0,0,2,1,1,0,1,0,1,0,1,0,0,0,1,0,0,1,2,0,0,0,1, %U A376679 0,0,0,3,0,0,1,1,0,0,0,2,1,0,0,1,0,0,0 %N A376679 Number of strict integer factorizations of n into nonsquarefree factors > 1. %H A376679 Dominic McCarty, <a href="/A376679/b376679.txt">Table of n, a(n) for n = 1..10000</a> %e A376679 The a(3456) = 28 factorizations are: %e A376679 (4*8*9*12) (4*9*96) (36*96) (3456) %e A376679 (8*9*48) (4*864) %e A376679 (4*12*72) (48*72) %e A376679 (4*16*54) (54*64) %e A376679 (4*18*48) (8*432) %e A376679 (4*24*36) (9*384) %e A376679 (4*27*32) (12*288) %e A376679 (4*8*108) (16*216) %e A376679 (8*12*36) (18*192) %e A376679 (8*16*27) (24*144) %e A376679 (8*18*24) (27*128) %e A376679 (9*12*32) (32*108) %e A376679 (9*16*24) %e A376679 (12*16*18) %t A376679 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A376679 Table[Length[Select[facs[n],UnsameQ@@#&&NoneTrue[#,SquareFreeQ]&]],{n,100}] (* corrected by _Gus Wiseman_, Jun 27 2025 *) %o A376679 (JavaScript) function nextNonSquareFree(val){val+=1;for(let i=2;i*i<=val;i+=1){if(val%i==0&&val%(i*i)==0){return val}}return nextNonSquareFree(val)}function strictFactorCount(val,maxFactor){if(val==1){return 1}let sum=0;while(maxFactor<val){maxFactor=nextNonSquareFree(maxFactor);if(val%maxFactor==0){sum+=strictFactorCount(val/maxFactor,maxFactor)}}return sum}let a="";for(let n=1;n<=100;n+=1){a+=strictFactorCount(n,0)+", "}console.log(a); // _Dominic McCarty_, Oct 19 2024 %Y A376679 Positions of zeros are A005117 (squarefree numbers), complement A013929. %Y A376679 For squarefree instead of nonsquarefree we have A050326, non-strict A050320. %Y A376679 For prime-powers we have A050361, non-strict A000688. %Y A376679 For nonprime numbers we have A050372, non-strict A050370. %Y A376679 The version for partitions is A256012, non-strict A114374. %Y A376679 For perfect-powers we have A323090, non-strict A294068. %Y A376679 The non-strict version is A376657. %Y A376679 Nonsquarefree numbers: %Y A376679 - A078147 (first differences) %Y A376679 - A376593 (second differences) %Y A376679 - A376594 (inflections and undulations) %Y A376679 - A376595 (nonzero curvature) %Y A376679 A000040 lists the prime numbers, differences A001223. %Y A376679 A001055 counts integer factorizations, strict A045778. %Y A376679 A005117 lists squarefree numbers, differences A076259. %Y A376679 A317829 counts factorizations of superprimorials, strict A337069. %Y A376679 Cf. A008480, A053797, A053806, A061398, A089259, A120992, A303707, A322452, A375707, A376312. %K A376679 nonn %O A376679 1,32 %A A376679 _Gus Wiseman_, Oct 08 2024