A376682 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the noncomposite numbers (A008578).
1, 2, 1, 3, 1, 0, 5, 2, 1, 1, 7, 2, 0, -1, -2, 11, 4, 2, 2, 3, 5, 13, 2, -2, -4, -6, -9, -14, 17, 4, 2, 4, 8, 14, 23, 37, 19, 2, -2, -4, -8, -16, -30, -53, -90, 23, 4, 2, 4, 8, 16, 32, 62, 115, 205, 29, 6, 2, 0, -4, -12, -28, -60, -122, -237, -442, 31, 2, -4, -6, -6, -2, 10, 38, 98, 220, 457, 899
Offset: 0
Examples
Array begins: n=1: n=2: n=3: n=4: n=5: n=6: n=7: n=8: n=9: ----------------------------------------------------------- k=0: 1 2 3 5 7 11 13 17 19 k=1: 1 1 2 2 4 2 4 2 4 k=2: 0 1 0 2 -2 2 -2 2 2 k=3: 1 -1 2 -4 4 -4 4 0 -6 k=4: -2 3 -6 8 -8 8 -4 -6 14 k=5: 5 -9 14 -16 16 -12 -2 20 -28 k=6: -14 23 -30 32 -28 10 22 -48 48 k=7: 37 -53 62 -60 38 12 -70 96 -70 k=8: -90 115 -122 98 -26 -82 166 -166 86 k=9: 205 -237 220 -124 -56 248 -332 252 -86 Triangle begins: 1 2 1 3 1 0 5 2 1 1 7 2 0 -1 -2 11 4 2 2 3 5 13 2 -2 -4 -6 -9 -14 17 4 2 4 8 14 23 37 19 2 -2 -4 -8 -16 -30 -53 -90 23 4 2 4 8 16 32 62 115 205 29 6 2 0 -4 -12 -28 -60 -122 -237 -442 31 2 -4 -6 -6 -2 10 38 98 220 457 899
Crossrefs
Programs
-
Mathematica
nn=12; t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1,!PrimeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}] (* or *) nn=12; q=Table[If[n==0,1,Prime[n]],{n,0,2nn}]; Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,nn},{i,nn}]
Formula
A(i,j) = Sum_{k=0..j} (-1)^(j-k) binomial(j,k) A008578(i+k).
Comments