cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376683 Antidiagonal-sums of the array A376682(n,k) = n-th term of the k-th differences of the noncomposite numbers (A008578).

Original entry on oeis.org

1, 3, 4, 9, 6, 27, -20, 109, -182, 471, -868, 1737, -2872, 4345, -4700, 1133, 14060, -55275, 150462, -346093, 717040, -1369351, 2432872, -4002905, 5964846, -7524917, 6123130, 4900199, -40900410, 134309057, -348584552, 798958881, -1678213106, 3277459119
Offset: 0

Views

Author

Gus Wiseman, Oct 15 2024

Keywords

Examples

			The fourth anti-diagonal of A376682 is: (7, 2, 0, -1, -2), so a(4) = 6.
		

Crossrefs

The modern version (for A000040 instead of A008578) is A140119.
The absolute version is A376681.
Antidiagonal-sums of A376682 (modern version A095195).
For composite instead of noncomposite we have A377033.
For squarefree instead of noncomposite we have A377038, nonsquarefree A377046.
A000040 lists the modern primes, differences A001223, second A036263.
A008578 lists the noncomposites, first differences A075526.

Programs

  • Mathematica
    nn=12;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!PrimeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]