A376687 Numbers that set records in in A376281.
24, 96, 120, 240, 360, 480, 840, 1080, 1680, 2160, 2520, 3360, 4320, 5040, 7560, 10080, 15120, 27720, 30240, 55440, 60480, 83160, 110880, 151200, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 831600, 997920, 1330560, 1441440, 1663200, 2162160, 2882880
Offset: 1
Keywords
Examples
Let b(n) = A376281(n). Table showing exponents of prime power factors of a(n) for n = 1..20. Example: a(5) = 360 = 2^3 * 3^2 * 5, hence we write "3.2.1". n a(n) Exp. b(a(n)) ---------------------------------- 1 24 * 3.1 1 4*6 2 96 5.1 2 6*16 = 8*12 3 120 ** 3.1.1 3 4*30 = 6*20 = 10*12 4 240 * 4.1.1 4 6*40 = 8*30 = 10*24 = 12*20 5 360 ** 3.2.1 5 4*90 = 10*36 = 12*30 = 15*24 = 18*20 6 480 5.1.1 6 6*80 = 8*60 = 10*48 = 12*40 = 16*30 = 20*24 7 840 * 3.1.1.1 7 8 1080 3.3.1 9 9 1680 * 4.1.1.1 10 10 2160 4.3.1 11 11 2520 ** 3.2.1.1 13 12 3360 5.1.1.1 14 * = a(n) is highly composite (in A002182), ** = a(n) is superior highly composite (in both A002182 and A002201).
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..241
- Michael De Vlieger, Plot S(n) = P(omega(n))*m at (x,y) = (m, omega(n)), where S is the union of A002182 and this sequence, P is A002110, omega is A001221, and only select m that harbor S(n) shown. Shows the coincidence of many terms in this sequence with A002182. Blue represents m in A002182, gold m in both A002182 and this sequence; dark blue represents m in A002201 (and also in A002182), orange m in both A002201 and this sequence; red indicates terms in this sequence that are not in A002182. Green highlights terms in A002182 but are not determined to be in this sequence.
- Michael De Vlieger, List of (d, k/d), d < k/d, k = a(n), n = 1..24, such that gcd(d, k/d) is not in {1, d, k/d}, showing type A in light gray, type B in either blue or gold, and type C (if it occurs) in black.
- Michael De Vlieger, Prime power decomposition of a(n), n = 1..241.
Programs
-
Mathematica
(* Load function f at A025487 *) r = 0; s = Select[Union@ Flatten@ f[8][[3 ;; -1]], Not@*SquareFreeQ]; nn = Length[s]; Print[nn] Reap[Monitor[ Do[k = s[[i]]; If[# > r, r = #; Sow[k]] &@ Count[Transpose@{#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k], _?(And[1 < GCD @@ {##}, Mod[#1, #2] != 0, Mod[#2, #1] != 0] & @@ # &)], {i, nn}], i] ][[-1, 1]]
Comments