This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376693 #10 Nov 07 2024 04:35:27 %S A376693 1,4,15,22,39,33,291,23174,90137,119135,1641362,1641337,7113362, %T A376693 471779113 %N A376693 a(n) is the first k such that if x(1) = k and x(i+1) = A062028(x(i)), x(1) to x(n) are all semiprimes but x(n+1) is not. %e A376693 a(4) = 39 because 39 = 3 * 13 is a semiprime, A062028(39) = 39 + 3 + 9 = 51 = 3 * 17 is a semiprime, A062028(51) = 51 + 5 + 1 = 57 = 3 * 19 is a semiprime, A062028(57) = 57 + 5 + 7 = 69 = 3 * 23 is a semiprime, but A062028(69) = 69 + 6 + 9 = 84 = 2^2 * 3 * 7 is not a semiprime. %p A376693 f:= proc(n) local x,i; %p A376693 x:= n; %p A376693 for i from 0 do %p A376693 if numtheory:-bigomega(x) <> 2 then return i fi; %p A376693 x:= x + convert(convert(x,base,10),`+`); %p A376693 od %p A376693 end proc: %p A376693 V:= Array(0..12): count:= 0: %p A376693 for i from 1 while count < 13 do %p A376693 v:= f(i); %p A376693 if v <= 12 and V[v] = 0 then V[v]:= i; count:= count+1 fi %p A376693 od: %p A376693 convert(V,list); %o A376693 (PARI) a(n) = if(n==0, return(1)); for(k=1, oo, if(bigomega(k) == 2, my(c=1, t=k+sumdigits(k)); while(bigomega(t) == 2, c += 1; t += sumdigits(t)); if(c == n, return(k)))); \\ _Daniel Suteu_, Nov 03 2024 %Y A376693 Cf. A001358, A062028, A090009, A108638. %K A376693 nonn,base,more %O A376693 0,2 %A A376693 _Robert Israel_, Oct 01 2024 %E A376693 a(13) from _Daniel Suteu_, Nov 03 2024