This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376699 #19 Apr 26 2025 05:59:34 %S A376699 3,4,5,6,8,10,11,13,15,16,18,21,22,25,31,32,36,39,40,42,51,57,61,63, %T A376699 65,66,71,73,79,82,94,97,106,107,110,120,121,127,128,129,130,138,142, %U A376699 144,161,192,204,205,212,216,232,234,244,259,264,265,308,329,346,348 %N A376699 Positions of primes in the sequence of numbers of the form 2^i * 3^j - 1 (A069353). %H A376699 Amiram Eldar, <a href="/A376699/b376699.txt">Table of n, a(n) for n = 1..10000</a> %F A376699 A069353(a(n)) = A003586(a(n)) - 1 = A005105(n). %t A376699 With[{lim = 10^10}, Position[Sort@ Flatten@ Table[2^i*3^j - 1, {i, 0, Log2[lim]}, {j, 0, Log[3, lim/2^i]}], _?PrimeQ] // Flatten] %o A376699 (PARI) lista(lim) = {my(s = List()); for(i = 0, logint(lim, 2), for(j = 0, logint(lim >> i, 3), listput(s, 2^i * 3^j - 1))); s = Set(s); for(i = 1, #s, if(isprime(s[i]), print1(i, ", ")));} %o A376699 (Python) %o A376699 from itertools import count, islice %o A376699 from sympy import isprime, integer_log %o A376699 def A069353(n): %o A376699 def bisection(f,kmin=0,kmax=1): %o A376699 while f(kmax) > kmax: kmax <<= 1 %o A376699 kmin = kmax >> 1 %o A376699 while kmax-kmin > 1: %o A376699 kmid = kmax+kmin>>1 %o A376699 if f(kmid) <= kmid: %o A376699 kmax = kmid %o A376699 else: %o A376699 kmin = kmid %o A376699 return kmax %o A376699 def f(x): return n+x-sum(((x+1)//3**i).bit_length() for i in range(integer_log(x+1,3)[0]+1)) %o A376699 return bisection(f,n-1,n-1) %o A376699 def A376699_gen(): # generator of terms %o A376699 return filter(lambda n:isprime(A069353(n)), count(1)) %o A376699 A376699_list = list(islice(A376699_gen(),30)) # _Chai Wah Wu_, Mar 31 2025 %Y A376699 Cf. A003586, A005105, A069353, A375906, A376700, A376701. %K A376699 nonn %O A376699 1,1 %A A376699 _Amiram Eldar_, Oct 02 2024