A376704 4-brilliant numbers: numbers which are the product of four primes having the same number of decimal digits.
16, 24, 36, 40, 54, 56, 60, 81, 84, 90, 100, 126, 135, 140, 150, 189, 196, 210, 225, 250, 294, 315, 350, 375, 441, 490, 525, 625, 686, 735, 875, 1029, 1225, 1715, 2401, 14641, 17303, 20449, 22627, 24167, 25289, 26741, 28561, 29887, 30613, 31603, 34969, 35321, 36179
Offset: 1
Examples
35321 is a term because 35321 = 11 * 13 * 13 * 19, and these four prime factors have the same number of digits.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Dario Alpern, 4-Brilliant Numbers.
Programs
-
Mathematica
A376704Q[k_] := With[{f = FactorInteger[k]}, Total[f[[All, 2]]] == 4 && Length[Union[IntegerLength[f[[All, 1]]]]] == 1]; Select[Range[40000], A376704Q] (* or *) dlist4[d_] := Sort[Times @@@ DeleteDuplicates[Map[Sort, Tuples[Prime[Range[PrimePi[10^(d-1)] + 1, PrimePi[10^d]]], 4]]]]; (* Generates terms with d-digits prime factors -- faster but memory intensive *) Flatten[Array[dlist4, 2]]