This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376707 #7 Oct 02 2024 12:30:12 %S A376707 1,1,3,7,13,24,41,70,114,186,293,459,703,1067,1593,2359,3447,4998, %T A376707 7175,10222,14445,20277,28263,39156,53922,73843,100587,136331,183890, %U A376707 246909,330094,439453,582738,769782,1013169,1328805,1736942,2263018,2939280,3806072,4914221 %N A376707 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} 1/(1 - x^j)^3. %F A376707 a(n) ~ r^(1/6) * (log(r)^2 + 6*polylog(2, 1-r))^(3/4) * exp(sqrt(2*(log(r)^2 + 6*polylog(2, 1-r))*n)) / (2^(11/4) * Pi^(3/2) * sqrt(1 + 2*r) * n^(5/4)), where r = 1 - A263719 = 0.3176721961719... is the real root of the equation r = (1-r)^3. %t A376707 nmax = 40; CoefficientList[Series[Sum[x^(k*(k+1)/2)/Product[1-x^j, {j, 1, k}]^3, {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x] %Y A376707 Cf. A000009, A143184, A376710. %Y A376707 Cf. A263719. %K A376707 nonn %O A376707 0,3 %A A376707 _Vaclav Kotesovec_, Oct 02 2024