This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376720 #9 Oct 05 2024 20:01:11 %S A376720 72,108,200,144,392,216,400,968,675,288,500,1352,324,784,1800,1323, %T A376720 2312,432,1125,2888,800,3528,1936,2700,4232,576,1372,3267,1000,2704, %U A376720 648,1568,6728,4563,3600,7688,5292,8712,2025,4624,9800,864,3087,10952,4500,5776,7803 %N A376720 Product of numbers m that are neither squarefree nor prime powers and rad(m), where rad = A007947. %C A376720 Term a(n) = k is powerful but not a prime power (i.e., in A286708) such that k/rad(k) is not squarefree, where rad = A007947 and k/rad(k) = A003557(k). %C A376720 Permutation of A372404. %H A376720 Michael De Vlieger, <a href="/A376720/b376720.txt">Table of n, a(n) for n = 1..65536</a> %H A376720 Michael De Vlieger, <a href="/A376720/a376720.png">Log log scatterplot of a(n)</a>, n = 1..2^16. %F A376720 a(n) = m * rad(m) for m in A126706. %e A376720 Let b(n) = A126706(n). %e A376720 Table of b(n) and a(n) for n <= 12: %e A376720 n b(n) a(n) %e A376720 ----------------------------------------- %e A376720 1 12 = 2^2 * 3 72 = 2^3 * 3^2 %e A376720 2 18 = 2 * 3^2 108 = 2^2 * 3^3 %e A376720 3 20 = 2^2 * 5 200 = 2^3 * 5^2 %e A376720 4 24 = 2^3 * 3 144 = 2^4 * 3^2 %e A376720 5 28 = 2^2 * 7 392 = 2^3 * 7^2 %e A376720 6 36 = 2^2 * 3^2 216 = 2^3 * 3^3 %e A376720 7 40 = 2^3 * 5 400 = 2^4 * 5^2 %e A376720 8 44 = 2^2 * 11 968 = 2^3 * 11^2 %e A376720 9 45 = 3^2 * 5 675 = 3^3 * 5^2 %e A376720 10 48 = 2^4 * 3 288 = 2^5 * 3^2 %e A376720 11 50 = 2 * 5^2 500 = 2^2 * 5^3 %e A376720 12 52 = 2^2 * 13 1352 = 2^3 * 13^2 %t A376720 Map[#*Times @@ FactorInteger[#][[All, 1]] &, Select[Range[12, 160], Nor[PrimePowerQ[#], SquareFreeQ[#]] &] ] %o A376720 (Python) %o A376720 from math import prod, isqrt %o A376720 from sympy import primepi, integer_nthroot, mobius, primefactors %o A376720 def A376720(n): %o A376720 def bisection(f,kmin=0,kmax=1): %o A376720 while f(kmax) > kmax: kmax <<= 1 %o A376720 while kmax-kmin > 1: %o A376720 kmid = kmax+kmin>>1 %o A376720 if f(kmid) <= kmid: %o A376720 kmax = kmid %o A376720 else: %o A376720 kmin = kmid %o A376720 return kmax %o A376720 def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))) %o A376720 return (m:=bisection(f,n,n))*prod(primefactors(m)) # _Chai Wah Wu_, Oct 05 2024 %Y A376720 Cf. A003557, A007947, A126706, A286708, A372404. %K A376720 nonn,easy %O A376720 1,1 %A A376720 _Michael De Vlieger_, Oct 05 2024