cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376730 Expansion of (1 - x^3 - x^4)/((1 - x^3 - x^4)^2 - 4*x^7).

This page as a plain text file.
%I A376730 #10 Oct 03 2024 08:32:31
%S A376730 1,0,0,1,1,0,1,6,1,1,15,15,2,28,70,29,46,210,211,111,496,925,586,1067,
%T A376730 3005,3123,2821,8100,13024,11068,20385,44068,48604,57325,129261,
%U A376730 192224,200585,358806,662117,781433,1055567,2050819,2941702,3524140,6067682,10169037
%N A376730 Expansion of (1 - x^3 - x^4)/((1 - x^3 - x^4)^2 - 4*x^7).
%H A376730 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,2,2,0,-1,2,-1).
%F A376730 a(n) = 2*a(n-3) + 2*a(n-4) - a(n-6) + 2*a(n-7) - a(n-8).
%F A376730 a(n) = Sum_{k=0..floor(n/3)} binomial(2*k,2*n-6*k).
%o A376730 (PARI) my(N=50, x='x+O('x^N)); Vec((1-x^3-x^4)/((1-x^3-x^4)^2-4*x^7))
%o A376730 (PARI) a(n) = sum(k=0, n\3, binomial(2*k, 2*n-6*k));
%Y A376730 Cf. A108479, A376729, A376731.
%Y A376730 Cf. A376724, A376727.
%K A376730 nonn
%O A376730 0,8
%A A376730 _Seiichi Manyama_, Oct 03 2024