cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376731 Expansion of (1 - x^4 - x^5)/((1 - x^4 - x^5)^2 - 4*x^9).

This page as a plain text file.
%I A376731 #10 Oct 03 2024 09:57:08
%S A376731 1,0,0,0,1,1,0,0,1,6,1,0,1,15,15,1,1,28,70,28,2,45,210,210,46,67,495,
%T A376731 924,496,157,1002,3003,3004,1121,1911,8009,12871,8161,4880,18684,
%U A376731 43760,43948,23409,41820,126124,184988,133285,113373,324616,647112,657273,454366
%N A376731 Expansion of (1 - x^4 - x^5)/((1 - x^4 - x^5)^2 - 4*x^9).
%H A376731 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,2,2,0,0,-1,2,-1).
%F A376731 a(n) = 2*a(n-4) + 2*a(n-5) - a(n-8) + 2*a(n-9) - a(n-10).
%F A376731 a(n) = Sum_{k=0..floor(n/4)} binomial(2*k,2*n-8*k).
%o A376731 (PARI) my(N=60, x='x+O('x^N)); Vec((1-x^4-x^5)/((1-x^4-x^5)^2-4*x^9))
%o A376731 (PARI) a(n) = sum(k=0, n\4, binomial(2*k, 2*n-8*k));
%Y A376731 Cf. A108479, A376729, A376730.
%Y A376731 Cf. A376725, A376728.
%K A376731 nonn
%O A376731 0,10
%A A376731 _Seiichi Manyama_, Oct 03 2024