This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376732 #30 Nov 07 2024 08:48:30 %S A376732 1,4,0,9,9,0,12,15,16,16,17,23,25,25,25,20,30,35,36,36,36,25,37,45,49, %T A376732 49,49,49,28,44,55,62,64,64,64,64,33,52,66,76,81,81,81,81,81,36,60,77, %U A376732 92,100,100,100,100,100,100,41,68,88,104,121,121,121,121,121,121,121 %N A376732 Triangle read by rows: T(n,k) is the maximum number of squares covered (i.e., attacked) by k independent (i.e., non-attacking) queens on an n X n chessboard. %C A376732 T(2,2) = T(3,3) = 0 indicate that there are no solutions to the n-queens problem when n is 2 or 3. %H A376732 Mia Muessig, <a href="/A376732/b376732.txt">Table of n, a(n) for n = 1..240</a> %H A376732 John King, <a href="/A376732/a376732.pdf">Examples for Queens 1,2,3,4,5 up to 11x11</a>. %H A376732 John King, <a href="/A376732/a376732.jpg">Examples for Queens 6,7,8,9 up to 15x15</a>. %H A376732 Mia Muessig, <a href="https://gist.github.com/PhoenixSmaug/18deba3e6cf140505b14ec27940038a9">Julia code to compute the sequence</a> %F A376732 T(n,k) = n^2 for k >= A075324(n), n >= 4. %e A376732 Triangle begins: %e A376732 n\k| 1 2 3 4 5 6 7 8 9 10 11 12 %e A376732 ----+----------------------------------------------------------- %e A376732 1 | 1; %e A376732 2 | 4, 0; %e A376732 3 | 9, 9, 0; %e A376732 4 | 12, 15, 16, 16; %e A376732 5 | 17, 23, 25, 25, 25; %e A376732 6 | 20, 30, 35, 36, 36, 36; %e A376732 7 | 25, 37, 45, 49, 49, 49, 49; %e A376732 8 | 28, 44, 55, 62, 64, 64, 64, 64; %e A376732 9 | 33, 52, 66, 76, 81, 81, 81, 81, 81; %e A376732 10 | 36, 60, 77, 92, 100, 100, 100, 100, 100, 100; %e A376732 11 | 41, 68, 88, 104, 121, 121, 121, 121, 121, 121, 121; %e A376732 12 | 44, 76, 101, 120, 134, 142, 144, 144, 144, 144, 144, 144; %e A376732 13 | 49, 84, 112, 136, 153, 165, 169, 169, 169, 169, 169, ...; %e A376732 14 | 52, 92, 125, 152, 172, 186, 194, 196, 196, 196, 196, ...; %e A376732 15 | 57, 100, 136, 168, 193, 209, 221, 224, 225, 225, 225, ...; %e A376732 16 | 60, 108, 149, 184, 212, 231, 242, 251, 256, 256, 256, ...; %e A376732 17 | 65, 116, 160, 200, 233, 255, 269, 281, 289, 289, 289, ...; %e A376732 18 | 68, 124, 173, 216, 252, 277, 294, 310, 322, 324, 324, ...; %e A376732 ... %Y A376732 Columns 1..8 are A047461, A374933, A375116, A374934, A374935, A374936, A374937, A374938. %Y A376732 Cf. A075324, A002567, A075458, A274947. %K A376732 nonn,tabl %O A376732 1,2 %A A376732 _John King_, Oct 03 2024 %E A376732 Initial terms by John King and Mia Müßig added by _Mia Muessig_, Oct 05 2024