A376929 Products of 5 distinct primes that are sandwiched between sphenic numbers.
50610, 52206, 63546, 65190, 71890, 73830, 77406, 84930, 89310, 89870, 90390, 92598, 98210, 116754, 119210, 120990, 123410, 125994, 131054, 132430, 132870, 137410, 140998, 141702, 144430, 148190, 150306, 151810, 159942, 160854, 162470, 164406, 165110, 167314, 170562, 172938, 174306, 176946, 185658
Offset: 1
Keywords
Examples
50610 is a term because 50610=2*3*5*7*241 is the product of five distinct primes and 50609=13*17*229, 50611=11*43*107 are sphenic numbers. 52206 is a term because 52206=2*3*7*11*113 is the product of five distinct primes and 52205=5*53*197, 52207=17*37*83 are sphenic numbers.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local F; F:= ifactors(n)[2]; if F[..,2] <> [1$5] then return false fi; F:= ifactors(n-1)[2]; if F[..,2] <> [1$3] then return false fi; F:= ifactors(n+1)[2]; F[..,2] = [1$3] end proc: select(filter, [seq(i,i=2..2*10^5,4)]); # Robert Israel, Nov 12 2024
-
Mathematica
SequencePosition[Map[#[[;; , 2]] &, FactorInteger[Range[200000]]], {{1, 1, 1}, {1, 1, 1, 1, 1}, {1, 1, 1}}][[;; , 1]] + 1 (* Amiram Eldar, Oct 11 2024 *)
Comments