cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376742 Decimal expansion of Product_{p prime} (p^3 + 1)/(p^3 - 1).

This page as a plain text file.
%I A376742 #19 Jul 14 2025 16:43:27
%S A376742 1,4,2,0,3,0,8,3,0,3,4,8,9,1,9,3,3,5,3,2,4,8,1,8,4,4,2,7,0,6,5,4,9,0,
%T A376742 0,6,7,5,8,6,3,9,4,6,7,1,6,3,6,8,5,6,1,8,6,8,8,2,3,5,4,3,0,6,2,1,4,2,
%U A376742 2,9,5,4,8,4,3,6,3,4,1,7,8,3,9,2,6,4,3,1,6,8,4,0,6,1,7,3,6,4,0,5
%N A376742 Decimal expansion of Product_{p prime} (p^3 + 1)/(p^3 - 1).
%D A376742 E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, second revised (Heath-Brown) edition, Oxford University Press, 1986. See equation 1.2.8 at p. 5.
%H A376742 Michael I. Shamos, <a href="http://euro.ecom.cmu.edu/people/faculty/mshamos/cat.pdf">A catalog of the real numbers</a>, (2007). See pp. 408-409.
%F A376742 Equals zeta(3)^2/zeta(6) = Sum_{k>=1} 2^omega(k)/k^3. See Titchmarsh and Shamos.
%F A376742 Equals 945*zeta(3)^2/Pi^6.
%F A376742 Equals A157289 / A088453 = A013664 / A347328^2. - _R. J. Mathar_, Jul 14 2025
%e A376742 1.420308303489193353248184427065490...
%t A376742 RealDigits[Zeta[3]^2/Zeta[6],10,100][[1]]
%o A376742 (PARI) prodeulerrat((p^3 + 1)/(p^3 - 1))
%Y A376742 Cf. A000578, A001221, A002117, A013664, A034444, A092732, A183030.
%K A376742 nonn,cons
%O A376742 1,2
%A A376742 _Stefano Spezia_, Oct 03 2024