This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376758 #15 Oct 15 2024 12:19:22 %S A376758 2,1,1,1,2,1,3,3,6,3,1,2,1,4,1,7,2,13,7,2,5,5,13,7,1,3,3,6,7,32,4,7, %T A376758 10,16,8,4,4,1 %N A376758 The terms of A376201 consist of runs of successive numbers that increase by 1 at each step: a(n) is one-half of length of the n-th such run. %C A376758 [At present it is only a conjecture that the runs have even length, but the proof should not be difficult.] %e A376758 A376201 begins 1, 2, 3, 4, 11, 12, 27, 28, 59, 60, 123, 124, 125, 126, 255, ... %e A376758 The runs have lengths 4,2,2,4,... so the present sequence begins 2,1,1,2,... %o A376758 (Python) %o A376758 from itertools import count, islice %o A376758 from sympy import isprime, nextprime %o A376758 def A376758_gen(): # generator of terms %o A376758 c, a, p, q = 2, 2, 3, 4 %o A376758 for n in count(3): %o A376758 b = min(p,q) if isprime(a) else (p if a == (p<<1) else q) %o A376758 if b == n: %o A376758 if b == a+1: %o A376758 c += 1 %o A376758 else: %o A376758 yield c>>1 %o A376758 c = 1 %o A376758 if b == p: %o A376758 p = nextprime(p) %o A376758 else: %o A376758 q += isprime(q+1)+1 %o A376758 a = b %o A376758 A376758_list = list(islice(A376758_gen(),10)) # _Chai Wah Wu_, Oct 14 2024 %Y A376758 Cf. A376198, A376201. %K A376758 nonn,more %O A376758 1,1 %A A376758 _N. J. A. Sloane_, Oct 07 2024 %E A376758 a(33)-a(35) from _Michael S. Branicky_, Oct 08 2024 %E A376758 a(36)-a(38) from _Michael S. Branicky_, Oct 15 2024