cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376766 a(n) = 1 + Sum_{k=1..n, j=1..k} binomial(n,k)*binomial(n,j)*|Stirling_1(k,j)|*j!.

This page as a plain text file.
%I A376766 #20 Nov 09 2024 13:51:23
%S A376766 1,2,9,67,709,9766,165751,3342081,78023905,2069303986,61440372701,
%T A376766 2018742611535,72713594116285,2848845086153782,120610707912196867,
%U A376766 5486918880456879061,266925386719765703169,13827085272988988990146,759855686741314297312177,44152359275709028329389627
%N A376766 a(n) = 1 + Sum_{k=1..n, j=1..k} binomial(n,k)*binomial(n,j)*|Stirling_1(k,j)|*j!.
%C A376766 If Stirling_1 in the definition is changed to Stirling_2, we get A000169.
%H A376766 Paolo Xausa, <a href="/A376766/b376766.txt">Table of n, a(n) for n = 0..375</a>
%F A376766 a(n) ~ c * d^n * n^n / exp(n), where d = A226572 = -LambertW(-1, -exp(-2)) and c = 1.350274261169912007066341887216772613236351893372220769387... - _Vaclav Kotesovec_, Nov 09 2024
%p A376766 A376766 := proc(n) local k,j;
%p A376766 1 + sum(sum(binomial(n,k)*binomial(n,j)*abs(stirling1(k,j))*j!,j=1..k),k=1..n);
%p A376766 end; # _N. J. A. Sloane_, Nov 03 2024
%t A376766 A376766[n_] := 1 + Sum[Binomial[n, k]*Binomial[n, j]*Abs[StirlingS1[k, j]]*j!, {k, n}, {j, k}];
%t A376766 Array[A376766, 25, 0] (* _Paolo Xausa_, Nov 04 2024 *)
%Y A376766 Cf. A000169, A000312, A002720, A007840, A376765.
%K A376766 nonn
%O A376766 0,2
%A A376766 _Peter J. Cameron_, Nov 03 2024
%E A376766 Definition corrected by _N. J. A. Sloane_, Nov 09 2024