cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376784 Expansion of 1/sqrt((1 - x^3 - x^5)^2 - 4*x^8).

This page as a plain text file.
%I A376784 #12 Apr 28 2025 17:45:37
%S A376784 1,0,0,1,0,1,1,0,4,1,1,9,1,9,16,2,36,25,17,100,37,101,225,74,401,442,
%T A376784 289,1226,820,1306,3138,1737,5000,7106,5161,15998,15185,18901,44308,
%U A376784 34282,67861,110365,92501,219609,259621,295242,637570,620350,986373,1694619
%N A376784 Expansion of 1/sqrt((1 - x^3 - x^5)^2 - 4*x^8).
%F A376784 G.f.: 1/sqrt((1 - x^3 + x^5)^2 - 4*x^5) = 1/sqrt((1 + x^3 - x^5)^2 - 4*x^3).
%t A376784 CoefficientList[Series[1/Sqrt[(1-x^3-x^5)^2-4x^8],{x,0,50}],x] (* _Harvey P. Dale_, Apr 28 2025 *)
%o A376784 (PARI) my(N=50, x='x+O('x^N)); Vec(1/sqrt((1-x^3-x^5)^2-4*x^8))
%o A376784 (PARI) a(n) = sum(k=0, n\5, ((n-2*k)%3==0)*binomial((n-2*k)/3, k)^2);
%Y A376784 Cf. A246884, A376722, A376783.
%Y A376784 Cf. A052920.
%K A376784 nonn
%O A376784 0,9
%A A376784 _Seiichi Manyama_, Oct 04 2024