cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376788 Expansion of (1 - x^3 + x^4)/((1 - x^3 + x^4)^2 - 4*x^4).

This page as a plain text file.
%I A376788 #10 Oct 04 2024 05:43:39
%S A376788 1,0,0,1,3,0,1,10,5,1,21,35,8,36,126,85,64,330,463,243,726,1717,1392,
%T A376788 1651,5019,6571,5383,12832,24496,23324,33321,76472,98380,104653,
%U A376788 215371,362540,394897,606894,1177065,1530509,1899137,3531467,5529960,6679652,10503034
%N A376788 Expansion of (1 - x^3 + x^4)/((1 - x^3 + x^4)^2 - 4*x^4).
%H A376788 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,2,2,0,-1,2,-1).
%F A376788 a(n) = 2*a(n-3) + 2*a(n-4) - a(n-6) + 2*a(n-7) - a(n-8).
%F A376788 a(n) = Sum_{k=0..floor(n/3)} binomial(2*k+1,2*n-6*k).
%o A376788 (PARI) my(N=50, x='x+O('x^N)); Vec((1-x^3+x^4)/((1-x^3+x^4)^2-4*x^4))
%o A376788 (PARI) a(n) = sum(k=0, n\3, binomial(2*k+1, 2*n-6*k));
%Y A376788 Cf. A376716, A376787.
%Y A376788 Cf. A376724, A376727, A376730.
%K A376788 nonn
%O A376788 0,5
%A A376788 _Seiichi Manyama_, Oct 04 2024