cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376790 Table T(n,k) read by antidiagonals: T(n,k) (n >=1, k >= 2) is the number of inversions in the radix-k digit reversal permutation of 0, 1, ..., k^n-1.

This page as a plain text file.
%I A376790 #34 Dec 10 2024 10:06:13
%S A376790 0,0,1,0,9,8,0,36,135,44,0,100,864,1458,208,0,225,3500,15552,14094,
%T A376790 912,0,441,10800,95000,258048,130491,3840,0,784,27783,413100,2425000,
%U A376790 4174848,1187541,15808
%N A376790 Table T(n,k) read by antidiagonals: T(n,k) (n >=1, k >= 2) is the number of inversions in the radix-k digit reversal permutation of 0, 1, ..., k^n-1.
%C A376790 T(n,k) is also the maximum possible number of inversions in the sequence of chips in the (n+1)-st layer of the tree in the stable configuration resulting from directed chip-firing of k^n labeled chips 1, 2, ..., k^n starting at the root of an infinite, rooted directed k-ary tree. See Theorem 6.1 in Inagaki, Khovanova, and Luo (2024).
%H A376790 David M. W. Evans, <a href="https://doi.org/10.1109/TASSP.1987.1165252">An Improved Digit-Reversal Permutation Algorithm for the Fast Fourier and Hartley Transforms</a>, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-35, No. 8 (1987), 1120-1125.
%H A376790 Ryota Inagaki, Tanya Khovanova, and Austin Luo, <a href="https://arxiv.org/abs/2410.23265">Chip Firing on Directed k-ary Trees</a>, arXiv:2410.23265 [math.CO], 2024.
%H A376790 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bit-reversal_permutation">Bit-reversal Permutation</a>
%F A376790 T(n, k) = (k^(2*n) - n*k^(n+1) + (n-1)*k^n) / 4.
%e A376790 For n=3, k=2, the radix-2 digit reversal permutation of 0, 1, 2, ..., 2^3-1 is 0, 4, 2, 6, 1, 5, 3, 7. This permutation has 8 inversions.
%e A376790 Array begins:
%e A376790 =======================================================
%e A376790 n/k |    2        3          4           5            6
%e A376790 ----+--------------------------------------------------
%e A376790   1 |    0        0          0           0            0 ...
%e A376790   2 |    1        9         36         100          225 ...
%e A376790   3 |    8      135        864        3500        10800 ...
%e A376790   4 |   44     1458      15552       95000       413100 ...
%e A376790   5 |  208    14094     258048     2425000     15066000 ...
%e A376790   6 |  912   130491    4174848    60937500    543834000 ...
%e A376790   7 | 3840  1187541   67018752  1525312500  19588521600 ...
%e A376790   ...
%o A376790 (Python)
%o A376790 s = ""
%o A376790 for d in range(3, 11):
%o A376790     for n in range(1, d-1):
%o A376790         k = d-n
%o A376790         s = s + str((k**(2*n) -  (n* (k**(n+1))) + (n-1) * (k**n))//4) + ", "
%o A376790 print(s)
%Y A376790 Cf. A100575 (column 2).
%K A376790 nonn,tabl
%O A376790 1,5
%A A376790 _Ryota Inagaki_, _Tanya Khovanova_, and _Austin Luo_, Oct 04 2024