A376794 Starts of runs of 3 consecutive integers that are in A376616.
38143807, 67141710, 67511743, 67736383, 269912383, 675612223, 1251282942, 2216832254, 4135244542, 4213075438, 4256878846, 4608511334, 5089851270, 5148094783, 5383281343, 5457887279, 5905845439, 7247769919, 7355297535, 7811735295, 8209151742, 8503999231, 8591105023, 9015656767
Offset: 1
Examples
38143807 is a term since 38143807, 38143808 and 38143809 are all in A376616: 38143807/A000120(38143807) = 2934139, and 2934139/A000120(2934139) = 225703 are integers, 38143808/A000120(38143808) = 4767976, and 4767976/A000120(4767976) = 595997 are integers, and 38143809/A000120(38143809) = 4238201, and 4238201/A000120(4238201) = 385291 are integers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..250
Programs
-
Mathematica
q[k_] := q[k] = Module[{w = DigitCount[k, 2, 1]}, Divisible[k, w] && Divisible[k/w, DigitCount[k/w, 2, 1]]]; Select[Range[10^8], q[#] && q[#+1] && q[#+2] &]
-
PARI
is1(k) = {my(w = hammingweight(k)); !(k % w) && !((k/w) % hammingweight(k/w));} lista(kmax) = {my(q1 = is1(1), q2 = is1(2), q3); for(k = 3, kmax, q3 = is1(k); if(q1 && q2 && q3, print1(k-2, ", ")); q1 = q2; q2 = q3);}