cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376795 Numbers k such that k and k+1 are both in A376617.

Original entry on oeis.org

1, 10624, 13824, 1114112, 2625664, 4563999, 6554624, 16843904, 17266688, 17368064, 20003840, 27137024, 32375160, 32679360, 42993664, 44643599, 63732096, 69222464, 69424640, 70083584, 80778752, 84783104, 85458944, 90256383, 92478000, 116469899, 118063231, 121900544
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2024

Keywords

Examples

			10624 is a term since both 10624 and 10625 are in A376617: 10624/A000120(10624) = 2656, 2656/A000120(2656) = 664, and 664/A000120(664) = 166 are integers, and 10625/A000120(10625) = 2125, 2125/A000120(2125) = 425, and 425/A000120(425) = 85 are integers.
		

Crossrefs

Subsequence of A330931, A376617 and A376793.
Cf. A000120.

Programs

  • Mathematica
    q[k_] := q[k] = Module[{w = DigitCount[k, 2, 1], w2, m, n}, IntegerQ[m = k/w] && Divisible[m, w2 = DigitCount[m, 2, 1]] && Divisible[n = m/w2, DigitCount[n, 2, 1]]]; Select[Range[1.2*10^6], q[#] && q[#+1] &]
  • PARI
    s(n) = {my(w = hammingweight(n)); if(w == 1, 0, if(n % w, 1, 1 + s(n/w)));}
    is1(k) = {my(sk = s(k)); sk == 0 || sk >= 4;}
    lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}