A376796 Table T(n, k) read by upward antidiagonals. T(n,1) = A376180, T(n,2) = A376180(A376180(n)), T(n,3) = A376180(A376180(A376180(n))) and so on.
1, 4, 1, 5, 3, 1, 3, 6, 5, 1, 6, 5, 2, 6, 1, 2, 2, 6, 4, 2, 1, 13, 4, 4, 2, 3, 4, 1, 12, 16, 3, 3, 4, 5, 3, 1, 14, 10, 8, 5, 5, 3, 6, 5, 1, 11, 9, 11, 12, 6, 6, 5, 2, 6, 1, 15, 15, 14, 15, 10, 2, 2, 6, 4, 2, 1, 10, 17, 17, 9, 17, 11, 4, 4, 2, 3, 4, 1, 16, 11, 18, 18, 14, 18, 15, 3, 3, 4, 5, 3, 1, 9, 8, 15, 7, 7, 9, 7, 17, 5, 5, 3, 6, 5, 1, 17, 14, 12, 17, 13, 13, 14, 13
Offset: 1
Examples
Table begins: k = 1 2 3 4 5 ----------------------------------- n = 1: 1, 1, 1, 1, 1, ... n = 2: 4, 3, 5, 6, 2, ... n = 3: 5, 6, 2, 4, 3, ... n = 4: 3, 5, 6, 2, 4, ... n = 5: 6, 2, 4, 3, 5, ... n = 6: 2, 4, 3, 5, 6, ... Column k = 1 contains the start of A376180. Ord(T(1,1),T(2,1), ... T(6,1)) = 5, ord(T(1,1),T(2,1), ... T(18,1)) = 10, ord(T(1,1),T(2,1), ... T(40,1)) = 60, ord(T(1,1),T(2,1), ... T(75,1)) = 420, ord(T(1,1),T(2,1), ... T(126,1)) = 7140, where ord is the order of the permutation.
Links
- Boris Putievskiy, Table of n, a(n) for n = 1..9870
- Boris Putievskiy, Integer Sequences: Irregular Arrays and Intra-Block Permutations, arXiv:2310.18466 [math.CO], 2023.
- Eric Weisstein's World of Mathematics, Polygonal Number.
- Index entries for sequences that are permutations of the natural numbers.
Programs
-
Mathematica
a[n_]:=Module[{L,R,P,Result},L=Ceiling[Max[x/.NSolve[x^2 (x+1)-2 n==0,x,Reals]]];R=n-((L-1)^2)*L/2;P=Which[OddQ[R]&&OddQ[L*(3*L-1)/2],(L*(3*L-1)/2-R+1+1)/2,OddQ[R]&&EvenQ[L*(3*L-1)/2],(R+L*(3*L-1)/2+1)/2,EvenQ[R]&&OddQ[L*(3*L-1)/2],Ceiling[(L*(3*L-1)/2+1)/2]+R/2,EvenQ[R]&&EvenQ[L*(3*L-1)/2],Ceiling[(L*(3*L-1)/2+1)/2]-R/2]; Result=P+(L-1)^2*L/2;Result] (*A376180*) composeSequence[a_,n_,k_]:=Nest[a,n,k] Nmax=5;T=Table[composeSequence[a,n,k],{n,1,Nmax},{k,1,Nmax}];T
Comments