This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376800 #16 Oct 12 2024 14:43:53 %S A376800 30,42,70,105,2431,2717,3289,3553,4147,4199,4301,4433,4807,5083,5291, %T A376800 5423,5681,5797,5863,6061,6149,6409,6479,6721,6851,6919,7163,7337, %U A376800 7429,7579,7657,7667,7733,7843,8041,8177,8437,8569,8671,8723,8789,8987,9061,9139,9269 %N A376800 3-brilliant numbers with distinct prime factors. %H A376800 Michael S. Branicky, <a href="/A376800/b376800.txt">Table of n, a(n) for n = 1..10000</a> %e A376800 30 = 2*3*5 is a term. %e A376800 2431 = 11*13*17 is a term. %o A376800 (Python) %o A376800 from sympy import factorint %o A376800 def ok(n): %o A376800 f = factorint(n) %o A376800 return len(f) == sum(f.values()) == 3 and len(set([len(str(p)) for p in f])) == 1 %o A376800 print([k for k in range(9300) if ok(k)]) # _Michael S. Branicky_, Oct 05 2024 %o A376800 (Python) %o A376800 from math import prod %o A376800 from sympy import primerange %o A376800 from itertools import count, combinations, islice %o A376800 def bgen(d): # generator of terms that are products of d-digit primes %o A376800 primes, out = list(primerange(10**(d-1), 10**d)), set() %o A376800 for t in combinations(primes, 3): out.add(prod(t)) %o A376800 yield from sorted(out) %o A376800 def agen(): # generator of terms %o A376800 for d in count(1): yield from bgen(d) %o A376800 print(list(islice(agen(), 45))) # _Michael S. Branicky_, Oct 05 2024 %Y A376800 Intersection of A376703 and A007304. %K A376800 nonn,base,easy %O A376800 1,1 %A A376800 _Paul Duckett_, Oct 04 2024 %E A376800 a(6) and beyond from _Michael S. Branicky_, Oct 05 2024