This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376814 #37 Oct 31 2024 10:41:07 %S A376814 2,2,7,7,21,42,71,268,611,1352,3099,8471,23877,63564,182771,527001, %T A376814 1671752,5055853 %N A376814 a(n) is the number of squares that have all digits distinct in base n. %e A376814 a(4) = 7 because the only squares with distinct digits in base 4 are 0^2 = 0_4, 1^2 = 1_4, 2^2 = 10_4, 3^2 = 21_4, 6^2 = 210_4, 7^2 = 301_4 and 15^2 = 3201_4. %p A376814 f:= proc(b) local k,t,F; %p A376814 t:= 0; %p A376814 for k from 0 to floor(sqrt(b^b-1)) do %p A376814 F:= convert(k^2, base, b); %p A376814 if nops(F) = nops(convert(F,set)) then t:= t+1 fi; %p A376814 od; %p A376814 t %p A376814 end proc: %p A376814 map(f, [$2..12]); %o A376814 (Python) %o A376814 from math import isqrt %o A376814 from sympy.ntheory import digits %o A376814 def A376814(n): return sum(1 for k in range(isqrt(n**n-1)+1) if len(s:=digits(k**2,n)[1:])==len(set(s))) # _Chai Wah Wu_, Oct 09 2024 %Y A376814 Cf. A119509, A376897. %K A376814 nonn,base,more %O A376814 2,1 %A A376814 _Robert Israel_, Oct 09 2024 %E A376814 a(15)-a(16) from _Michael S. Branicky_, Oct 09 2024 %E A376814 a(17) from _Michael S. Branicky_, Oct 10 2024 %E A376814 a(18) from _Michael S. Branicky_, Oct 14 2024 %E A376814 a(19) from _Michael S. Branicky_, Oct 31 2024