cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376815 Decimal expansion of a constant related to the asymptotics of A376812.

This page as a plain text file.
%I A376815 #12 Oct 08 2024 09:36:54
%S A376815 4,1,8,3,6,2,3,0,8,2,3,1,5,0,1,0,3,7,5,9,2,4,3,4,2,0,7,4,7,1,4,3,6,2,
%T A376815 8,9,8,9,5,6,3,8,6,9,7,7,0,7,0,3,5,8,8,7,8,5,7,8,3,2,7,1,0,0,2,0,9,8,
%U A376815 1,9,5,1,5,7,2,6,9,5,0,8,1,6,9,4,1,1,4,8,1,0,4,6,8,4,1,7,7,0,4,5,4,9,5,3,2
%N A376815 Decimal expansion of a constant related to the asymptotics of A376812.
%F A376815 Equals limit_{n->infinity} A376812(n)^(1/sqrt(n)).
%F A376815 Equals A376660^2. - _Vaclav Kotesovec_, Oct 06 2024
%F A376815 Equals exp(sqrt(3*log(r)^2 + 8*polylog(2, r^(1/2)) - 2*Pi^2/3)), where r = A088559 = 0.4655712318767680266567312252199... is the real root of the equation r*(1+r)^2 = 1. - _Vaclav Kotesovec_, Oct 07 2024
%e A376815 4.18362308231501037592434207471436289895638697707035887857832710...
%t A376815 RealDigits[E^Sqrt[3*Log[r]^2 + 8*PolyLog[2, r^(1/2)] - 2*Pi^2/3] /. r -> (-2 + ((29 - 3*Sqrt[93])/2)^(1/3) + ((29 + 3*Sqrt[93])/2)^(1/3))/3, 10, 120][[1]] (* _Vaclav Kotesovec_, Oct 07 2024 *)
%Y A376815 Cf. A333198, A376621, A376658, A376659, A376660, A376812.
%Y A376815 Cf. A088559.
%K A376815 nonn,cons
%O A376815 1,1
%A A376815 _Vaclav Kotesovec_, Oct 05 2024