This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376826 #9 Oct 07 2024 18:35:50 %S A376826 1,1,2,1,2,4,1,2,5,8,1,2,6,14,16,1,2,7,20,43,32,1,2,8,26,76,142,64,1, %T A376826 2,9,32,115,312,499,128,1,2,10,38,160,542,1384,1850,256,1,2,11,44,211, %U A376826 832,2809,6512,7193,512,1,2,12,50,268,1182,4864,15374,32400,29186,1024 %N A376826 Array read by antidiagonals: T(n,k) = n! * [x^n] exp(2*x + (k/2)*x^2), n >= 0, k >= 0. %H A376826 Andrew Howroyd, <a href="/A376826/b376826.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals) %H A376826 Arvind Ayyer, Hiranya Kishore Dey and Digjoy Paul, <a href="https://arxiv.org/abs/2406.06036">How large is the character degree sum compared to the character table sum for a finite group?</a>, arXiv preprint arXiv:2406.06036, [math.RT], 2024. %F A376826 E.g.f. of column k: exp(2*x + k*x^2/2). %F A376826 Column k is the binomial transform of column k of A359762. %F A376826 T(n,k) = Sum_{i=0..floor(n/2)} binomial(n,2*i) * 2^(n-2*i) * k^i * (2*i-1)!!. %F A376826 T(n,k) = Sum_{i=0..floor(n/2)} 2^(n-3*i) * k^i * n! / ((n-2*i)! * i!). %e A376826 Array begins: %e A376826 ====================================================== %e A376826 n\k | 0 1 2 3 4 5 6 7 ... %e A376826 ----+------------------------------------------------- %e A376826 0 | 1 1 1 1 1 1 1 1 ... %e A376826 1 | 2 2 2 2 2 2 2 2 ... %e A376826 2 | 4 5 6 7 8 9 10 11 ... %e A376826 3 | 8 14 20 26 32 38 44 50 ... %e A376826 4 | 16 43 76 115 160 211 268 331 ... %e A376826 5 | 32 142 312 542 832 1182 1592 2062 ... %e A376826 6 | 64 499 1384 2809 4864 7639 11224 15709 ... %e A376826 7 | 128 1850 6512 15374 29696 50738 79760 118022 ... %e A376826 ... %o A376826 (PARI) T(n,k) = {sum(i=0, n\2, binomial(n,2*i) * 2^(n-2*i) * k^i * (2*i)!/(2^i*i!))} %Y A376826 Columns 0..5 are A000079, A005425, A000898, A202830, A193778, A202832. %Y A376826 Cf. A359762, A373625. %K A376826 nonn,tabl %O A376826 0,3 %A A376826 _Andrew Howroyd_, Oct 07 2024