This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376827 #12 Oct 21 2024 05:07:55 %S A376827 1,1,1,3,6,3,7,21,21,7,19,76,114,76,19,51,255,510,510,255,51,141,846, %T A376827 2115,2820,2115,846,141,393,2751,8253,13755,13755,8253,2751,393,1107, %U A376827 8856,30996,61992,77490,61992,30996,8856,1107 %N A376827 T(n, k) = binomial(n, k)*hypergeom([(1 - n)/2, -n/2], [1], 4). %H A376827 Paolo Xausa, <a href="/A376827/b376827.txt">Table of n, a(n) for n = 0..11475</a> (rows 0..150 of triangle, flattened). %F A376827 T(n, k) = binomial(n, k)* A002426(n). - _Detlef Meya_, Oct 11 2024 %e A376827 [0] 1; %e A376827 [1] 1, 1; %e A376827 [2] 3, 6, 3; %e A376827 [3] 7, 21, 21, 7; %e A376827 [4] 19, 76, 114, 76, 19; %e A376827 [5] 51, 255, 510, 510, 255, 51; %e A376827 [6] 141, 846, 2115, 2820, 2115, 846, 141; %e A376827 [7] 393, 2751, 8253, 13755, 13755, 8253, 2751, 393; %e A376827 [8] 1107, 8856, 30996, 61992, 77490, 61992, 30996, 8856, 1107; %p A376827 T := (n, k) -> binomial(n, k)*hypergeom([(1 - n)/2, -n/2], [1], 4): seq(seq(simplify(T(n, k)), k = 0..n), n = 0..8); %t A376827 A376827[n_, k_] := Binomial[n, k]*Hypergeometric2F1[(1-n)/2, -n/2, 1, 4]; %t A376827 Table[A376827[n, k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Oct 21 2024 *) %Y A376827 Cf. A002426 (column 0 and main diagonal), A098453 (row sums). %K A376827 nonn,tabl %O A376827 0,4 %A A376827 _Peter Luschny_, Oct 05 2024