This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376833 #14 Oct 07 2024 00:43:31 %S A376833 3,5,7,5,7,11,13,3,11,17,7,19,13,3,23,17,11,19,29,31,13,3,23,5,37,11, %T A376833 3,41,17,43,29,13,31,47,19,3,5,53,5,37,3,23,59,17,61,41,43,5,19,67,3, %U A376833 47,71,13,29,73,7,31,79,53,23,5,83,5,3,59,89,7,61,37,3 %N A376833 Second smallest prime factor of numbers m that are both squarefree and composite. %H A376833 Michael De Vlieger, <a href="/A376833/b376833.txt">Table of n, a(n) for n = 1..10000</a> %H A376833 Michael De Vlieger, <a href="/A376833/a376833.png">Log log scatterplot of a(n)</a>, n = 1..2^20. %F A376833 a(n) = A119288(A120944(n)). %F A376833 For even squarefree semiprime A120944(n) = 2*p with odd prime p, a(n) = p sets a record in this sequence. %e A376833 Let b(n) = A120944(n). %e A376833 a(1) = 3 since b(1) = 6, and 3 is the second smallest prime factor. %e A376833 a(2) = 5 since b(2) = 10, and 5 is the second smallest prime factor. %e A376833 Table showing select values of a(n): %e A376833 n b(n) a(n) %e A376833 ----------------------- %e A376833 1 6 = 2*3 3 %e A376833 2 10 = 2*5 5 %e A376833 3 14 = 2*7 7 %e A376833 4 15 = 3*5 5 %e A376833 5 21 = 3*7 7 %e A376833 6 22 = 2*11 11 %e A376833 7 26 = 2*13 13 %e A376833 8 30 = 2*3*5 3 %e A376833 14 42 = 2*3*7 3 %e A376833 22 66 = 2*3*11 3 %e A376833 24 70 = 2*5*7 5 %e A376833 82 210 = 2*3*5*7 3 %t A376833 Map[FactorInteger[#][[2, 1]] &, Select[Range[250], And[SquareFreeQ[#], CompositeQ[#]] &]] %o A376833 (Python) %o A376833 from math import isqrt %o A376833 from sympy import primepi, mobius, primefactors %o A376833 def A376833(n): %o A376833 def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) %o A376833 m, k = n+1, f(n+1) %o A376833 while m != k: %o A376833 m, k = k, f(k) %o A376833 return primefactors(m)[1] # _Chai Wah Wu_, Oct 06 2024 %Y A376833 Cf. A119288, A120944. %K A376833 nonn,easy %O A376833 1,1 %A A376833 _Michael De Vlieger_, Oct 05 2024