A376834 Numbers k that have at least 1 powerful number m such that 1 < m <= k that are not prime powers such that rad(m) | k, where rad = A007947.
36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 100, 102, 108, 110, 114, 120, 126, 130, 132, 138, 140, 144, 150, 156, 160, 162, 168, 170, 174, 180, 186, 190, 192, 196, 198, 200, 204, 210, 216, 220, 222, 224, 225, 228, 230, 234, 238, 240, 246, 250, 252, 255, 258, 260
Offset: 1
Keywords
Examples
Table showing select values of a(n): n a(n) A286708 Intersect row a(n) of A162306. --------------------------------------------------------------- 1 36 = 2^2 * 3^2 {36} 2 42 = 2 * 3 * 7 {36} 3 48 = 2^4 * 3 {36} 4 54 = 2 * 3^3 {36} 5 60 = 2^2 * 3 * 5 {36} 6 66 = 2 * 3 * 11 {36} 7 72 = 2^3 * 3^2 {36, 72} 8 78 = 2 * 3 * 13 {36, 72} 9 84 = 2^2 * 3 * 7 {36, 72} 14 108 = 2^2 * 3^3 {36, 72, 108} 17 120 = 2^3 * 3 * 5 {36, 72, 100, 108} 24 150 = 2 * 3 * 5^2 {36, 72, 100, 108, 144}
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Plot p^e | a(n) at (x,y) = (n,pi(p)), n = 1..1500, pi = A000720, with a color function indicating exponent e = 1 in black, e = 2 = red, e = 3 = orange, ..., maximum e in magenta. The indicator bar below the image represents squarefree a(n) in green, a(n) in A332785 in blue, and a(n) in A286708 in violet.
Programs
-
Mathematica
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Reap[Do[m = 1; k = 0; While[Nor[k == 2, m == n + 1], If[And[Divisible[n, #], Divisible[m, #^2], ! PrimePowerQ[m] ] &[ rad[m]], k++]; m++]; If[k == 2, Sow[n]], {n, 2^10}] ][[-1, 1]]
Comments