cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376834 Numbers k that have at least 1 powerful number m such that 1 < m <= k that are not prime powers such that rad(m) | k, where rad = A007947.

Original entry on oeis.org

36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 100, 102, 108, 110, 114, 120, 126, 130, 132, 138, 140, 144, 150, 156, 160, 162, 168, 170, 174, 180, 186, 190, 192, 196, 198, 200, 204, 210, 216, 220, 222, 224, 225, 228, 230, 234, 238, 240, 246, 250, 252, 255, 258, 260
Offset: 1

Views

Author

Michael De Vlieger, Oct 06 2024

Keywords

Comments

Numbers k such that A286708 and row k of A162306 meet.
Contains A286708, since for k in A286708, m = k is such that rad(m) | k.

Examples

			Table showing select values of a(n):
   n    a(n)                A286708 Intersect row a(n) of A162306.
  ---------------------------------------------------------------
   1    36 = 2^2 * 3^2      {36}
   2    42 = 2 * 3 * 7      {36}
   3    48 = 2^4 * 3        {36}
   4    54 = 2 * 3^3        {36}
   5    60 = 2^2 * 3 * 5    {36}
   6    66 = 2 * 3 * 11     {36}
   7    72 = 2^3 * 3^2      {36, 72}
   8    78 = 2 * 3 * 13     {36, 72}
   9    84 = 2^2 * 3 * 7    {36, 72}
  14   108 = 2^2 * 3^3      {36, 72, 108}
  17   120 = 2^3 * 3 * 5    {36, 72, 100, 108}
  24   150 = 2 * 3 * 5^2    {36, 72, 100, 108, 144}
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    Reap[Do[m = 1; k = 0;
      While[Nor[k == 2, m == n + 1],
        If[And[Divisible[n, #], Divisible[m, #^2], ! PrimePowerQ[m] ] &[
          rad[m]], k++]; m++];
        If[k == 2, Sow[n]], {n, 2^10}] ][[-1, 1]]