This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376840 #7 Oct 13 2024 11:14:30 %S A376840 2,3,4,5,3,4,6,7,8,9,5,10,11,4,12,13,14,6,15,16,17,18,19,5,6,20,7,21, %T A376840 22,23,4,24,25,26,27,8,28,29,5,6,30,31,32,33,34,7,35,9,36,37,38,39,40, %U A376840 41,7,42,43,44,10,45,46,47,48,49,50,51,52,53,54,11,55 %N A376840 Take the integer partitions with at least 2 parts in order of their associated multinomial coefficients; a(n) is the sum of the n-th partition, i.e., the number of the row of A036038 (or A078760) in which the multinomial coefficient appears. In case of ties, take the sums (or row numbers) in nondecreasing order. %C A376840 Equivalently, a(n) is the number of the row of A036038 (or A078760) in which A376367(n) appears, with row numbers in nondecreasing order for numbers that appear multiple times in A376367. %C A376840 The multinomial coefficient of the n-th partition, with the ordering considered here, is A376367(n). %H A376840 Pontus von Brömssen, <a href="/A376840/b376840.txt">Table of n, a(n) for n = 1..10000</a> %H A376840 Pontus von Brömssen, <a href="https://oeis.org/plot2a?name1=A000027&name2=A376840&tform1=log+base+10&tform2=log+base+10&shift=0&radiop1=xy&drawpoints=true">Log-log plot</a>, using Plot2. %F A376840 a(n) = A056239(A376379(n)). %e A376840 n | A376367(n) | partition | a(n) %e A376840 --+------------+-----------+----- %e A376840 1 | 2 | (1,1) | 2 %e A376840 2 | 3 | (2,1) | 3 %e A376840 3 | 4 | (3,1) | 4 %e A376840 4 | 5 | (4,1) | 5 %e A376840 5 | 6 | (1,1,1) | 3 %e A376840 6 | 6 | (2,2) | 4 %e A376840 7 | 6 | (5,1) | 6 %Y A376840 Cf. A036038, A056239, A078760, A376367, A376379. %K A376840 nonn %O A376840 1,1 %A A376840 _Pontus von Brömssen_, Oct 06 2024