cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376845 Decimal expansion of Product_{p prime} (p^5 + 1)/(p^5 - 1).

This page as a plain text file.
%I A376845 #8 Oct 06 2024 14:35:32
%S A376845 1,0,7,4,1,5,0,8,4,5,6,7,2,0,3,8,3,6,4,6,9,7,5,0,6,2,1,4,7,5,5,6,1,6,
%T A376845 4,7,6,6,6,4,5,7,5,7,3,2,5,0,0,5,6,5,3,3,4,6,5,0,8,0,8,6,5,1,0,1,7,8,
%U A376845 6,1,0,9,3,2,4,1,2,4,8,1,2,3,8,3,4,2,9,4,0,0,1,3,4,6,7,0,6,1,2,4
%N A376845 Decimal expansion of Product_{p prime} (p^5 + 1)/(p^5 - 1).
%D A376845 E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, second revised (Heath-Brown) edition, Oxford University Press, 1986. See equation 1.2.8 at p. 5.
%H A376845 Michael I. Shamos, <a href="http://euro.ecom.cmu.edu/people/faculty/mshamos/cat.pdf">A catalog of the real numbers</a>, (2007). See p. 111.
%F A376845 Equals zeta(5)^2/zeta(10) = Sum_{k>=1} 2^omega(k)/k^5. See Titchmarsh and Shamos.
%e A376845 1.0741508456720383646975062147556164766645757325...
%t A376845 RealDigits[Zeta[5]^2/Zeta[10],10,100][[1]]
%o A376845 (PARI) prodeulerrat((p^5 + 1)/(p^5 - 1))
%Y A376845 Cf. A013663, A013668, A376742.
%K A376845 nonn,cons
%O A376845 1,3
%A A376845 _Stefano Spezia_, Oct 06 2024