This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376846 #12 Nov 07 2024 02:09:40 %S A376846 0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,1,0,2,0,0,0,2,0,1,0,2,0,0,1,3, %T A376846 0,1,0,3,1,1,0,4,0,2,0,3,0,0,0,3,1,2,0,2,0,1,1,3,0,2,0,3,0,0,0,7,0,3, %U A376846 1,5,0,1,0,4,0,3,0,8,0,1,0,4,0,4,0,4,2 %N A376846 Number of m <= n such that rad(m) | n and Omega(m) > Omega(n), where rad = A007947 and Omega = A001222. %C A376846 Number of m not exceeding n such that the squarefree kernel of m divides n, and m has more prime factors with repetition than does n. %C A376846 Number of m in row n of A162306 such that Omega(m) > Omega(n). %H A376846 Michael De Vlieger, <a href="/A376846/b376846.txt">Table of n, a(n) for n = 1..10000</a> %H A376846 Michael De Vlieger, <a href="/A376846/a376846.png">Hasse diagrams</a> of m in select rows n of A162306 indicating in red those m such that Omega(m) > Omega(n). %H A376846 Michael De Vlieger, <a href="https://doi.org/10.13140/RG.2.2.18645.64480">Numbers k for which floor(log k / log lpf(k)) <= bigomega(k)</a>, 2024, about zeros in this sequence. %F A376846 a(n) = card({m <= n : rad(m) | n, Omega(m) > Omega(n) }). %F A376846 a(n) = 0 for prime power n (in A000961). %F A376846 a(n) < A010846(n). %e A376846 Table of select n such that a(n) > 0: %e A376846 n a(n) List of m such that Omega(m) > Omega(n). %e A376846 ------------------------------------------------- %e A376846 10 1 {8} %e A376846 14 1 {8} %e A376846 18 1 {16} %e A376846 20 1 {16} %e A376846 22 2 {8, 16} %e A376846 26 2 {8, 16} %e A376846 28 1 {16} %e A376846 30 2 {16, 24} %e A376846 33 1 {27} %e A376846 34 3 {8, 16, 32} %e A376846 36 1 {32} %e A376846 38 3 {8, 16, 32} %e A376846 39 1 {27} %e A376846 40 1 {32} %e A376846 42 4 {16, 24, 32, 36} %t A376846 rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; %t A376846 {0}~Join~Table[With[{k = PrimeOmega[n]}, Count[Range[n], _?(And[Divisible[n, rad[#]], PrimeOmega[#] > k] &)]], {n, 2, 120}] %Y A376846 Cf. A000961, A001222, A007947, A010846, A162306. %K A376846 nonn %O A376846 1,22 %A A376846 _Michael De Vlieger_, Oct 06 2024