This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376847 #17 Oct 26 2024 04:22:54 %S A376847 0,0,0,0,0,1,0,0,0,1,0,2,0,1,1,0,0,1,0,3,1,1,0,4,0,1,0,3,0,4,0,0,1,1, %T A376847 1,2,0,1,1,5,0,5,0,3,2,1,0,6,0,1,1,3,0,1,1,5,1,1,0,11,0,1,2,0,1,5,0,3, %U A376847 1,5,0,4,0,1,1,3,1,5,0,8,0,1,0,11,1,1,1 %N A376847 Number of m > n such that rad(m) | n and Omega(m) <= Omega(n), where rad = A007947 and Omega = A001222. %H A376847 Michael De Vlieger, <a href="/A376847/b376847.txt">Table of n, a(n) for n = 1..10000</a> %H A376847 Michael De Vlieger, <a href="/A376847/a376847.png">Hasse diagrams of m in select R(n)</a>, where R(n) is the union of rows n of A162306 and A376248, indicating in blue those m > n such that Omega(m) <= Omega(n). %F A376847 a(n) = card({m > n : rad(m) | n, Omega(m) <= Omega(n) }). %F A376847 a(n) = 0 for prime power n (in A000961). %F A376847 a(n) = card(A376248 \ A162306). %F A376847 a(n) = A376567(n) - A010846(n) + A376546(n) = binomial(A001222(n) + A001221(n), A001221(n)) - A010846(n) + A376546(n). %e A376847 Table of select n such that a(n) > 0: %e A376847 n a(n) List of m in A376248 such that Omega(m) <= Omega(n) %e A376847 ------------------------------------------------------------- %e A376847 6 1 {9} %e A376847 10 1 {25} %e A376847 12 2 {18, 27} %e A376847 14 1 {49} %e A376847 15 1 {25} %e A376847 18 1 {27} %e A376847 20 3 {25, 50, 125} %e A376847 24 4 {27, 36, 54, 81} %e A376847 28 3 {49, 98, 343} %e A376847 30 4 {45, 50, 75, 125} %e A376847 40 5 {50, 100, 125, 250, 625} %e A376847 48 6 {54, 72, 81, 108, 162, 243} %e A376847 60 11 {75, 81, 90, 100, 125, 135, 150, 225, 250, 375, 625} %p A376847 with(NumberTheory): %p A376847 cond := (m, n) -> irem(n, Radical(m)) = 0 and Omega(m) <= Omega(n): %p A376847 a := n -> nops(select(m -> cond(m, n), [seq(n+1..A068795(n))])): %p A376847 seq(a(n), n = 1..87); # _Peter Luschny_, Oct 25 2024 %t A376847 rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; %t A376847 Table[k = PrimeOmega[n]; w = PrimeNu[n]; Binomial[k + w, w] - Count[Range[n], _?(And[Divisible[n, rad[#]], PrimeOmega[#] > k] &)], {n, 120}] %Y A376847 Cf. A000961, A001221, A001222, A007947, A162306, A376567, A376846, A068795. %K A376847 nonn %O A376847 1,12 %A A376847 _Michael De Vlieger_, Oct 13 2024