cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376859 Decimal expansion of Product_{k=1..4} Gamma(k/3).

This page as a plain text file.
%I A376859 #8 Oct 12 2024 03:51:29
%S A376859 3,2,3,9,3,7,1,3,4,0,7,1,6,9,7,3,2,0,6,1,8,0,0,6,6,0,1,1,6,3,0,7,9,4,
%T A376859 8,9,8,0,1,2,1,3,7,8,2,4,5,5,4,5,1,2,5,1,0,9,1,4,4,2,6,6,9,4,0,0,1,7,
%U A376859 7,7,1,2,5,6,9,6,7,7,0,0,6,5,8,8,3,9,0,1,1,8
%N A376859 Decimal expansion of Product_{k=1..4} Gamma(k/3).
%H A376859 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GammaFunction.html">Gamma Function</a>.
%H A376859 <a href="/index/Ga#gamma_function">Index to sequences related to the Gamma function</a>.
%F A376859 Equals 2*Pi*Gamma(1/3)/(3*sqrt(3)) = 2*Pi*Gamma(4/3)/sqrt(3) = A186706*A202623 (cf. eq. 86 in Weisstein link).
%e A376859 3.23937134071697320618006601163079489801213782...
%t A376859 First[RealDigits[2*Pi*Gamma[4/3]/Sqrt[3], 10, 100]]
%Y A376859 Cf. A002194, A019692, A202623.
%Y A376859 Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376911 (m = 5 and m = 6), A376912 (m = 7), A376913 (m = 8).
%K A376859 nonn,cons
%O A376859 1,1
%A A376859 _Paolo Xausa_, Oct 09 2024