A376861 Numbers with a composite number of prime factors and a composite number of distinct prime factors.
210, 330, 390, 462, 510, 546, 570, 690, 714, 770, 798, 840, 858, 870, 910, 930, 966, 1110, 1122, 1155, 1190, 1218, 1230, 1254, 1260, 1290, 1302, 1320, 1326, 1330, 1365, 1410, 1430, 1482, 1518, 1554, 1560, 1590, 1610, 1722, 1770, 1785, 1794, 1806, 1830, 1848, 1870, 1890, 1914, 1938, 1974, 1980, 1995
Offset: 1
Keywords
Examples
840 is a term since 840 = 2 * 2 * 2 * 3 * 5 * 7 has 6 prime factors and 4 distinct prime factors, and both 6 and 4 are composite.
Programs
-
Mathematica
Select[Range[2000],CompositeQ[PrimeOmega[#]]&&CompositeQ[PrimeNu[#]]&] (* James C. McMahon, Feb 13 2025 *)
-
Python
from sympy import factorint, isprime def ok(n): f = factorint(n) w, W = len(f), sum(e for e in f.values()) return w > 3 and W > 3 and not isprime(w) and not isprime(W) print([k for k in range(1, 2000) if ok(k)]) # Michael S. Branicky, Feb 07 2025