This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376863 #7 Oct 12 2024 15:37:48 %S A376863 1,3,1,13,7,1,73,50,12,1,501,400,125,18,1,4051,3609,1335,255,25,1, %T A376863 37633,36463,15214,3485,460,33,1,394353,408694,186949,48769,7805,763, %U A376863 42,1,4596553,5036792,2479602,714364,131299,15708,1190,52,1,58941091,67714809,35419350,11045558,2256933,312375,29190,1770,63,1,824073141,986271823,543025851,180766890,40194965,6221397,676893,50970,2535,75,1 %N A376863 Triangle of generalized Stirling numbers of the lower level of the hierarchy (section m=1). %H A376863 Igor Victorovich Statsenko, <a href="https://aeterna-ufa.ru/sbornik/IN-2024-10-1.pdf#page=19">Relationships of āPā-generalized Stirling numbers of the first kind with other generalized Stirling numbers</a>, Innovation science No 10-1, State Ufa, Aeterna Publishing House, 2024, pp. 19-12. In Russian. %F A376863 T(m, n, k) = Sum_{i=0..n} Sum_{j=i..n} Stirling1(n-j, k) * binomial(n+m, i) * binomial(n, j)* binomial(j, i) * i! * m^(j - i), for m = 1. %e A376863 Triangle starts: %e A376863 [0] 1; %e A376863 [1] 3, 1; %e A376863 [2] 13, 7, 1; %e A376863 [3] 73, 50, 12, 1; %e A376863 [4] 501, 400, 125, 18, 1; %e A376863 [5] 4051, 3609, 1335, 255, 25, 1; %e A376863 [6] 37633, 36463, 15214, 3485, 460, 33, 1; %e A376863 [7] 394353, 408694, 186949, 48769, 7805, 763, 42, 1; %e A376863 [8] 4596553, 5036792, 2479602, 714364, 131299, 15708, 1190, 52, 1; %p A376863 T:=(m,n,k)->add(add(Stirling1(n-j,k)*binomial(n+m,i)*binomial(n,j)*binomial(j,i)*i!*m^(j-i), j=i..n),i=0..n):m:=1:seq(seq(T(m,n,k),k=0..n),n=0..10); %Y A376863 A000262 (column 0), A052852 (row sums). %Y A376863 Triangle for m=0: A130534. %K A376863 nonn,tabl %O A376863 0,2 %A A376863 _Igor Victorovich Statsenko_, Oct 07 2024