cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376863 Triangle of generalized Stirling numbers of the lower level of the hierarchy (section m=1).

This page as a plain text file.
%I A376863 #7 Oct 12 2024 15:37:48
%S A376863 1,3,1,13,7,1,73,50,12,1,501,400,125,18,1,4051,3609,1335,255,25,1,
%T A376863 37633,36463,15214,3485,460,33,1,394353,408694,186949,48769,7805,763,
%U A376863 42,1,4596553,5036792,2479602,714364,131299,15708,1190,52,1,58941091,67714809,35419350,11045558,2256933,312375,29190,1770,63,1,824073141,986271823,543025851,180766890,40194965,6221397,676893,50970,2535,75,1
%N A376863 Triangle of generalized Stirling numbers of the lower level of the hierarchy (section m=1).
%H A376863 Igor Victorovich Statsenko, <a href="https://aeterna-ufa.ru/sbornik/IN-2024-10-1.pdf#page=19">Relationships of ā€œPā€-generalized Stirling numbers of the first kind with other generalized Stirling numbers</a>, Innovation science No 10-1, State Ufa, Aeterna Publishing House, 2024, pp. 19-12. In Russian.
%F A376863 T(m, n, k) = Sum_{i=0..n} Sum_{j=i..n} Stirling1(n-j, k) * binomial(n+m, i) * binomial(n, j)* binomial(j, i) * i! * m^(j - i), for m = 1.
%e A376863 Triangle starts:
%e A376863 [0]        1;
%e A376863 [1]        3,        1;
%e A376863 [2]       13,        7,        1;
%e A376863 [3]       73,       50,       12,       1;
%e A376863 [4]      501,      400,      125,      18,       1;
%e A376863 [5]     4051,     3609,     1335,     255,      25,       1;
%e A376863 [6]    37633,    36463,    15214,    3485,     460,      33,      1;
%e A376863 [7]   394353,   408694,   186949,   48769,    7805,     763,     42,    1;
%e A376863 [8]  4596553,  5036792,  2479602,  714364,  131299,   15708,   1190,   52,     1;
%p A376863 T:=(m,n,k)->add(add(Stirling1(n-j,k)*binomial(n+m,i)*binomial(n,j)*binomial(j,i)*i!*m^(j-i), j=i..n),i=0..n):m:=1:seq(seq(T(m,n,k),k=0..n),n=0..10);
%Y A376863 A000262 (column 0), A052852 (row sums).
%Y A376863 Triangle for m=0: A130534.
%K A376863 nonn,tabl
%O A376863 0,2
%A A376863 _Igor Victorovich Statsenko_, Oct 07 2024