This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376864 #12 Oct 27 2024 16:09:02 %S A376864 210,46189,55913,62491,70499,75361,78793,81719,84227,89947,95381, %T A376864 96577,99671,100529,101959,103037,104533,110143,111397,114257,116831, %U A376864 121693,121771,124729,127699,128557,128843,130169,131461,133331,134849,139403,141427,143429 %N A376864 4-brilliant numbers with distinct prime factors. %H A376864 Michael S. Branicky, <a href="/A376864/b376864.txt">Table of n, a(n) for n = 1..10000</a> %e A376864 210 = 2*3*5*7 is a term. %e A376864 130169 = 13*17*19*31 is a term. %o A376864 (Python) %o A376864 from sympy import factorint %o A376864 def ok(n): %o A376864 f = factorint(n) %o A376864 return len(f) == sum(f.values()) == 4 and len(set([len(str(p)) for p in f])) == 1 %o A376864 print([k for k in range(144000) if ok(k)]) # _Michael S. Branicky_, Oct 08 2024 %o A376864 (Python) %o A376864 from math import prod %o A376864 from sympy import primerange %o A376864 from itertools import count, combinations, islice %o A376864 def bgen(d): # generator of terms that are products of d-digit primes %o A376864 primes, out = list(primerange(10**(d-1), 10**d)), set() %o A376864 for t in combinations(primes, 4): out.add(prod(t)) %o A376864 yield from sorted(out) %o A376864 def agen(): # generator of terms %o A376864 for d in count(1): yield from bgen(d) %o A376864 print(list(islice(agen(), 34))) # _Michael S. Branicky_, Oct 08 2024 %Y A376864 Intersection of A046386 and A376704. %K A376864 nonn,base,easy %O A376864 1,1 %A A376864 _Paul Duckett_, Oct 07 2024 %E A376864 Terms corrected by _Michael S. Branicky_, Oct 08 2024