A376865 a(1) = 1. Thereafter, if A007947(a(n-1)) is in A002110, a(n) = smallest prime not already a term (condition [A]). Otherwise, if q is the greatest prime < Gpf(a(n-1)) which does not divide a(n-1), a(n) is the least novel multiple of q,(condition [B]).
1, 2, 3, 4, 5, 6, 7, 10, 9, 8, 11, 14, 15, 12, 13, 22, 21, 20, 18, 17, 26, 33, 28, 25, 24, 19, 34, 39, 44, 35, 27, 16, 23, 38, 51, 52, 55, 42, 30, 29, 46, 57, 68, 65, 66, 49, 40, 36, 31, 58, 69, 76, 85, 78, 77, 45, 32, 37, 62, 87, 92, 95, 102, 91, 88, 56, 50, 48
Offset: 1
Keywords
Examples
a(1) = 1 = A002110(0), so a(2) = 2 (smallest prime not already a term). a(2) = 2 = A002110(1), so a(3) = 3. a(3) = 3 not in A002110 therefore a(4) = 4, the least novel multiple of 2. rad(4) = 2 so a(5) = 5 the smallest prime not already a term.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^20.
- Michael De Vlieger, Log log scatterplot of G(n) = gpf(a(n)), n = 1..3000000, showing the confinement of G(n) to large primes for n > 2048704.
- Michael De Vlieger, Notes on this sequence.
- Michael De Vlieger, Tipping Point Sequence A365865, ResearchGate, 2024.
Programs
-
Mathematica
nn = 120; c[] := False; m[] := 1; f[x_] := FactorInteger[x][[All, 1]]; Array[Set[{a[#], c[#], m[#]}, {#, True, 2}] &, 2]; j = 2; v = 3; Do[If[Or[IntegerQ@ Log2[j], And[EvenQ[j], Union@ Differences@ PrimePi[#] == {1}]], k = v; While[c[k*m[k]], m[k]++]; k *= m[k], k = Last[#]; While[And[k > 1, Divisible[j, k]], k = NextPrime[k, -1]]; While[c[k*m[k]], m[k]++]; k *= m[k]] &[f[j]]; Set[{a[n], c[k], j}, {k, True, k}]; If[k == v, While[c[v], v = NextPrime[v] ] ], {n, 3, nn}]; Array[a, nn] (* Michael De Vlieger, Oct 09 2024 *)
Extensions
More terms from Michael De Vlieger, Oct 09 2024
Comments