cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376869 Expansion of g.f. exp(Sum_{n>=1} A061163(n)*t^n/n).

This page as a plain text file.
%I A376869 #14 Apr 02 2025 04:12:12
%S A376869 1,630,891285,1654468410,3510378217530,8062345916976876,
%T A376869 19512437110988445005,49011998362940952903570,
%U A376869 126572647331085036145017230,333972707681972700439601909620,896449866774126643993004643968130,2440147600216903599224231295951096900,6719826062906171491705313637277701498260
%N A376869 Expansion of g.f. exp(Sum_{n>=1} A061163(n)*t^n/n).
%F A376869 O.g.f.(t) = g satisfies the algebraic equation of order 30 of the form: 1 + Sum_{n=1..30} p(n,t)*g^n = 0, where p(n,t) are polynomials of t of order n with integer coefficients. For example p(15,t) = 2*t^9*(77558760*t^6 - 1112153600*t^5 - 2309989894*t^4 + 784164428*t^3 + 6287761*t^2 - 9848*t + 3)
%p A376869 Digits:=40;
%p A376869 series(exp(630*t*hypergeom([1, 1, 11/10, 13/10, 17/10, 19/10], [5/4, 3/2, 7/4, 2, 2], 3125*t)),t=0,16);
%p A376869 1,seq(coeff(%,t^kk),kk=1..15);
%Y A376869 Cf. A061163.
%K A376869 nonn
%O A376869 0,2
%A A376869 _Karol A. Penson_, Oct 07 2024