This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376875 #10 Feb 26 2025 11:36:47 %S A376875 8,4,5,8,2,4,1,0,9,5,0,6,4,9,6,8,4,6,9,9,4,6,5,3,7,7,9,8,4,7,9,5,2,1, %T A376875 7,0,5,8,6,7,3,2,9,9,5,0,9,7,3,1,5,0,3,7,4,1,2,8,0,6,3,5,8,3,9,1,3,9, %U A376875 6,2,3,2,2,5,8,0,3,0,5,0,9,5,8,7,5,1,6,5 %N A376875 Decimal expansion of ((1 + 1/a)*exp(-a) + (1 - 1/a)*exp(a))*sqrt(12/121) where a = Pi*sqrt(11/36). %H A376875 Paolo Xausa, <a href="/A376875/b376875.txt">Table of n, a(n) for n = 0..10000</a> %F A376875 Equals (4*sqrt(3/11)*(sqrt(11)*Pi*cosh((sqrt(11)*Pi)/6) - 6*sinh((sqrt(11)*Pi)/6)))/(11*Pi). %e A376875 0.8458241095064968469946537798479521705867329950973150... %p A376875 a := Pi*sqrt(11/36): c := ((1 + 1/a)*exp(-a) + (1 - 1/a)*exp(a))*sqrt(12/121): %p A376875 Digits := 110: evalf(c, Digits)*10^94: ListTools:-Reverse(convert(floor(%), base, 10)); %t A376875 First[RealDigits[((1 + 1/#)*Exp[-#] + (1 - 1/#)*Exp[#])*Sqrt[12/121] & [Pi*Sqrt[11/36]], 10, 100]] (* _Paolo Xausa_, Feb 26 2025 *) %K A376875 nonn,cons %O A376875 0,1 %A A376875 _Peter Luschny_, Oct 08 2024