A376876 Rademacher's partition formula extended to half-integers. a(n) = round(sqrt(48) * (cosh(h(n)) - sinh(h(n))/h(n)) / (24*n + 11)) where h(n) = sqrt(24*n + 11)*(Pi/6).
1, 1, 2, 4, 6, 9, 13, 18, 26, 36, 49, 66, 88, 117, 154, 202, 262, 338, 435, 555, 705, 891, 1122, 1407, 1757, 2185, 2709, 3347, 4121, 5060, 6194, 7561, 9205, 11178, 13540, 16362, 19727, 23732, 28490, 34132, 40810, 48701, 58011, 68977, 81874, 97019, 114778, 135573
Offset: 0
Keywords
Examples
The sequence p(n), {a(n)}, p(n+1), ... (where p(n) = A000041(n)) starts: 1, {1}, 1, {1}, 2, {2}, 3, {4}, 5, {6}, 7, {9}, 11, {13}, 15, {18}, 22, {26}, 30, {36}, 42, {49}, 56, {66}, 77, {88}, 101, ... In turn, the rounded arithmetic mean q(n) = round((a'(n) + a'(n-1))/2), (where a'(n) is a(n) before rounding) can be seen as a simple approximation to the partition numbers, q(n) ~ p(n). For example p(10^20) = 1.838176508344882643646... *10^11140086259, q(10^20) = 1.838176508344882643649... *10^11140086259. The sequence q(n) starts: 1, 1, 2, 3, 5, 7, 11, 16, 22, 31, 42, 57, 77, 103, 136, 178, 232, 300, ... For comparison, see the rounded values of the Hardy-Ramanujan approximate formula A050811. The unrounded value of a(0) is 0.8458241... = A376875.
Links
- Fredrik Johansson, Efficient implementation of the Hardy-Ramanujan-Rademacher formula, LMS Journal of Computation and Mathematics, 15:341-59, (2012), MR 2988821, S2CID 16580723.
- Fredrik Johansson, New partition function record: p(10^20) computed, (March 2014).
- Fredrik Johansson, Python program: Rademacher's partition formula, cos case.
- Hans Rademacher, On the partition function p(n), Proceedings of the London Mathematical Society, Second Series, 43 (4):241-254, (1937), MR 1575213.
- Richard Stanley, Does Rademacher's convergent series for p(n) define an analytic function?, and the Answer by Fredrik Johansson, (July 2020).
- Wikipedia, Partition function, approximation formulas.
Programs
-
Maple
ap := proc(n) local h; h := sqrt(24*n + 11)*(Pi/6): sqrt(48)*(cosh(h) - sinh(h)/h)/(24*n + 11) end: seq(round(evalf(ap(n), 64)), n = 0..47);
-
Mathematica
s[x_] := 1/E^x + E^x + 1/(E^x x) - E^x/x; h[x_] := Sqrt[11 + 24 x] Pi / 6; g[x_] := Sqrt[12]/(11 + 24 x); Table[Round[g[n] s[h[n]]], {n, 0, 47}]
-
Python
# See links.
Formula
a(n) ~ exp((Pi*sqrt(6*n + 3) * (Pi^2*(48*n + 23) - 72) + 6*Pi^2 - 108) / (72*Pi^2*(2*n + 1))) / (sqrt(12)*(2*n + 1)).
Extensions
Dedicated to N. J. A. Sloane on the occasion of his 85th birthday.
Comments