cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376878 Triangle read by rows: T(n, k) = n^k * n! * [x^k][y^n]((sec(y) + tan(y)) * exp(x*y)).

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 2, 9, 27, 27, 5, 32, 96, 256, 256, 16, 125, 500, 1250, 3125, 3125, 61, 576, 2700, 8640, 19440, 46656, 46656, 272, 2989, 16464, 60025, 168070, 352947, 823543, 823543, 1385, 17408, 109312, 458752, 1433600, 3670016, 7340032, 16777216, 16777216
Offset: 0

Views

Author

Peter Luschny, Oct 13 2024

Keywords

Examples

			Triangle starts:
  [0]    1;
  [1]    1,     1;
  [2]    1,     4,      4;
  [3]    2,     9,     27,     27;
  [4]    5,    32,     96,    256,     256;
  [5]   16,   125,    500,   1250,    3125,    3125;
  [6]   61,   576,   2700,   8640,   19440,   46656,   46656;
  [7]  272,  2989,  16464,  60025,  168070,  352947,  823543,   823543;
  [8] 1385, 17408, 109312, 458752, 1433600, 3670016, 7340032, 16777216, 16777216;
		

Crossrefs

Cf. A000111, A000312, A079901, A109449, A292976 (row sums).

Programs

  • Maple
    P := n -> coeff(series((sec(y) + tan(y)) * exp(x*y), y, 12), y, n):
    seq(seq(coeff(P(n), x,  k) * n^k * n!, k = 0..n), n = 0..8);
    T := (n, k) -> ifelse(n = k, n^n, (-1)^binomial(n - k, 2)*n^k*binomial(n, k)*(euler(n - k) - euler(n - k, 0)*2^(n - k))):
    seq(print([n], seq(T(n, k), k = 0..n)), n = 0..8);
  • Python
    from math import comb, isqrt
    from sympy import bernoulli, euler
    def A000111(n): return abs(((1<A376878(n): return comb(a:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),b:=n-comb(a+1,2))*a**b*A000111(a-b) # Chai Wah Wu, Nov 13 2024

Formula

T(n, k) = (-1)^binomial(n-k, 2)*n^k*binomial(n, k)*(Euler(n-k) - Euler(n-k, 0)*2^(n - k)) for 0 <= k < n and n^n for n = k.
T(n, k) = n^k*A109449(n, k) = n^k*binomial(n, k)*A000111(n - k).