A376878 Triangle read by rows: T(n, k) = n^k * n! * [x^k][y^n]((sec(y) + tan(y)) * exp(x*y)).
1, 1, 1, 1, 4, 4, 2, 9, 27, 27, 5, 32, 96, 256, 256, 16, 125, 500, 1250, 3125, 3125, 61, 576, 2700, 8640, 19440, 46656, 46656, 272, 2989, 16464, 60025, 168070, 352947, 823543, 823543, 1385, 17408, 109312, 458752, 1433600, 3670016, 7340032, 16777216, 16777216
Offset: 0
Examples
Triangle starts: [0] 1; [1] 1, 1; [2] 1, 4, 4; [3] 2, 9, 27, 27; [4] 5, 32, 96, 256, 256; [5] 16, 125, 500, 1250, 3125, 3125; [6] 61, 576, 2700, 8640, 19440, 46656, 46656; [7] 272, 2989, 16464, 60025, 168070, 352947, 823543, 823543; [8] 1385, 17408, 109312, 458752, 1433600, 3670016, 7340032, 16777216, 16777216;
Programs
-
Maple
P := n -> coeff(series((sec(y) + tan(y)) * exp(x*y), y, 12), y, n): seq(seq(coeff(P(n), x, k) * n^k * n!, k = 0..n), n = 0..8); T := (n, k) -> ifelse(n = k, n^n, (-1)^binomial(n - k, 2)*n^k*binomial(n, k)*(euler(n - k) - euler(n - k, 0)*2^(n - k))): seq(print([n], seq(T(n, k), k = 0..n)), n = 0..8);
-
Python
from math import comb, isqrt from sympy import bernoulli, euler def A000111(n): return abs(((1<
A376878(n): return comb(a:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),b:=n-comb(a+1,2))*a**b*A000111(a-b) # Chai Wah Wu, Nov 13 2024