A376880 Numbers that have Zumkeller divisors.
6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270
Offset: 1
Keywords
Examples
The Zumkeller divisors of 80 are {20, 40, 80}, so 80 is a term. The divisors of 81 are {1, 3, 9, 27, 81}, none of which is Zumkeller, so 81 is not a term.
Links
- Peter Luschny, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
with(NumberTheory): isZumkeller := proc(n) option remember; local s, p, i, P; s := SumOfDivisors(n); if s::odd or s < n*2 then false else P := mul(1 + x^i, i in Divisors(n)); is(0 < coeff(P, x, s/2)) fi end: select(n -> ormap(isZumkeller, Divisors(n)), [seq(1..270)]);
-
Mathematica
znQ[n_]:=Length[Select[{#, Complement[Divisors[n], #]}&/@Most[Rest[ Subsets[ Divisors[ n]]]], Total[#[[1]]]==Total[#[[2]]]&]]>0; zn=Select[Range[300], znQ] (* zn from A083207 *) ;Select[Range[270],IntersectingQ[Divisors[#],zn]&] (* James C. McMahon, Oct 23 2024 *)
Extensions
Incorrect comment removed by Peter Luschny, Dec 02 2024
Comments