cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376882 a(n) is the product of the Zumkeller divisors of n.

This page as a plain text file.
%I A376882 #17 Dec 02 2024 07:22:28
%S A376882 1,1,1,1,1,6,1,1,1,1,1,72,1,1,1,1,1,6,1,20,1,1,1,1728,1,1,1,28,1,180,
%T A376882 1,1,1,1,1,72,1,1,1,800,1,252,1,1,1,1,1,82944,1,1,1,1,1,324,1,1568,1,
%U A376882 1,1,2592000,1,1,1,1,1,396,1,1,1,70,1,1728,1,1,1,1,1,468,1,64000
%N A376882 a(n) is the product of the Zumkeller divisors of n.
%C A376882 d is a Zumkeller divisor of n if and only if d is a divisor of n and is Zumkeller (A083207).
%H A376882 Antti Karttunen, <a href="/A376882/b376882.txt">Table of n, a(n) for n = 1..10000</a>
%e A376882 The Zumkeller divisors of 80 are {20, 40, 80}, so a(80) = 64000.
%e A376882 The divisors of 81 are {1, 3, 9, 27, 81}, none of which is Zumkeller, so a(81) = 1.
%p A376882 # The function 'isZumkeller' is defined in A376880.
%p A376882 with(NumberTheory):
%p A376882 zdiv := n -> select(isZumkeller, Divisors(n));
%p A376882 a := n -> mul(k, k in zdiv(n));
%p A376882 seq(a(n), n = 1..80);
%o A376882 (PARI) A376882(n) = { my(m=1); fordiv(n,d,if(A083206(d)>0, m *= d)); (m); }; \\ _Antti Karttunen_, Dec 02 2024
%Y A376882 Cf. A083207, A023196, A171641, A376880 (positions of terms > 1).
%K A376882 nonn
%O A376882 1,6
%A A376882 _Peter Luschny_, Oct 19 2024