This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376882 #17 Dec 02 2024 07:22:28 %S A376882 1,1,1,1,1,6,1,1,1,1,1,72,1,1,1,1,1,6,1,20,1,1,1,1728,1,1,1,28,1,180, %T A376882 1,1,1,1,1,72,1,1,1,800,1,252,1,1,1,1,1,82944,1,1,1,1,1,324,1,1568,1, %U A376882 1,1,2592000,1,1,1,1,1,396,1,1,1,70,1,1728,1,1,1,1,1,468,1,64000 %N A376882 a(n) is the product of the Zumkeller divisors of n. %C A376882 d is a Zumkeller divisor of n if and only if d is a divisor of n and is Zumkeller (A083207). %H A376882 Antti Karttunen, <a href="/A376882/b376882.txt">Table of n, a(n) for n = 1..10000</a> %e A376882 The Zumkeller divisors of 80 are {20, 40, 80}, so a(80) = 64000. %e A376882 The divisors of 81 are {1, 3, 9, 27, 81}, none of which is Zumkeller, so a(81) = 1. %p A376882 # The function 'isZumkeller' is defined in A376880. %p A376882 with(NumberTheory): %p A376882 zdiv := n -> select(isZumkeller, Divisors(n)); %p A376882 a := n -> mul(k, k in zdiv(n)); %p A376882 seq(a(n), n = 1..80); %o A376882 (PARI) A376882(n) = { my(m=1); fordiv(n,d,if(A083206(d)>0, m *= d)); (m); }; \\ _Antti Karttunen_, Dec 02 2024 %Y A376882 Cf. A083207, A023196, A171641, A376880 (positions of terms > 1). %K A376882 nonn %O A376882 1,6 %A A376882 _Peter Luschny_, Oct 19 2024